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RESUMEN

Esta investigacion examiné de forma integral el desempefio de las principales herramientas de programacion asistida
por inteligencia artificial GitHub Copilot, Amazon Q Developer, TabNine y Claude.ai con el propdsito de comprender
su impacto en la productividad y el aprendizaje del desarrollador. La metodologia se fundamenté en un enfoque mixto
que combind revision sistematica de literatura reciente, aplicacion de encuestas estructuradas a profesionales del area
y el uso del método de Mapa Cognitivo Difuso (MCD) como técnica central de anélisis. EI MCD permitié representar
las relaciones causales entre variables como productividad percibida, facilidad de aprendizaje, calidad del codigo e
integracion con el entorno de desarrollo, proporcionando una vision mas precisa de las interdependencias entre estos
factores. Los resultados evidenciaron el liderazgo de GitHub Copilot en integracion y satisfaccion general, aunque
persistieron debilidades comunes en refactorizacion inteligente. Asimismo, se identificd una tensiéon entre la rapidez
en la generacion de cdédigo y la calidad profesional del producto final. El estudio concluyd que las herramientas de |1A
constituyen un recurso valioso en procesos de formacion y en contextos de desarrollo agil, pero su efectividad depen-
de de la adecuacion al perfil del equipo y al tipo de proyecto. Los resultados aportan un marco empirico que favorece
la adopcidn selectiva y estratégica de tecnologias de programacion asistida por IA.

Palabras clave: Mapa Cognitivo Difuso, Evaluacion Comparativa, Aprendizaje Automatizado, Integracion de Entornos,
Calidad del Codigo, Adopcion Tecnolégica.

ABSTRACT

This research comprehensively examined the performance of leading Al-assisted programming tools GitHub Copilot,
Amazon Q Developer, TabNine, and Claude.ai to understand their impact on developer productivity and learning. The
methodology was based on a mixed-method approach that combined a systematic review of recent literature, structu-
red surveys of developers, and the use of the Fuzzy Cognitive Mapping (FCM) method as the central analysis technique.
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FCM allowed for the representation of causal relationships
between key variables such as perceived productivity,
ease of learning, code quality, and integration with the de-
velopment environment, providing a more precise view of
the interdependencies between these factors. The results
demonstrated GitHub Copilot’s leadership in integration
and overall satisfaction, although common weaknesses in
intelligent refactoring persisted. A tension was also iden-
tified between the speed of code generation and the pro-
fessional quality of the final product. The study concluded
that Al tools are a valuable resource in training processes
and agile development contexts, but their effectiveness
depends on their suitability for the team’s profile and the
type of project. The findings provide an empirical fra-
mework that favors the selective and strategic adoption of
Al-assisted programming technologies.

Keywords: Fuzzy Cognitive Mapping, Benchmarking, Ma-
chine Learning, Environment Integration, Code Quality,
Technology Adoption.

INTRODUCCION

Lainvestigacion en programacion asistida por inteligencia
artificial (IA) experimenta un crecimiento sostenido desde
2021, consolidandose como uno de los campos mas di-
namicos de la ingenieria de software contemporanea. Los
modelos de lenguaje grandes (LLMs) demuestran capa-
cidades destacadas en la generacion de coédigo, repre-
sentando un avance cualitativo en la automatizacion del
desarrollo de software. Segun Kokol (2024), la investiga-
cion académica en A aplicada a la ingenieria de software
se estructura en quince categorias y cinco temas princi-
pales, o que evidencia la madurez del campo. Las ver-
siones recientes de ChatGPT, GitHub Copilot y Amazon
CodeWhisperer generan cédigo correcto el 65.2%, 46.3%
y 31.1% del tiempo, respectivamente (Yetilttiren et al.,
2023), estableciendo parametros cuantitativos de refe-
rencia para medir la efectividad de estas herramientas.

El desarrollo de software moderno enfrenta retos crecien-
tes en complejidad arquitectonica, rapidez de entrega y
mantenimiento de calidad. En este contexto, la IA emer-
ge como un agente transformador capaz de asistir a los
desarrolladores, optimizar tareas repetitivas y mejorar la
eficiencia operativa. Su integracion en el ciclo de vida del
desarrollo de software (SDLC) representa una transicion
hacia entornos semi-autébnomos, donde los profesionales
evolucionan de codificadores manuales a orquestadores
de sistemas inteligentes (Qiu et al., 2025). Estudios re-
cientes confirman que los desarrolladores completan ta-
reas hasta un 55.8% mas rapido al utilizar asistentes de
codificacion basados en IA como GitHub Copilot, lo que
refleja su potencial impacto en la productividad.

No obstante, la problematica persiste en que los desarro-
lladores invierten cerca del 70% de su tiempo en tareas
repetitivas como depuraciéon o escritura de cédigo boi-
lerplate. Entre el 60% y el 75% de los usuarios reportan
mayor satisfaccion y menor frustracion al emplear estas
herramientas, lo que sugiere una mejora en la calidad del
trabajo percibido. Este escenario evidencia la necesidad
de investigaciones que evalien de manera sistemati-
ca y comparativa la efectividad real de la programacion
asistida por IA en entornos profesionales y académicos
(Candelon et al., 2023).

En el contexto ecuatoriano, la adopcion de tecnologias
emergentes se consolida progresivamente en sectores
estratégicos como educacion, salud, agricultura e indus-
tria, impulsada por la Agenda de Transformacion Digital
2022-2025 del Ministerio de Telecomunicaciones y de la
Sociedad de la Informacion Erazo (2024). Esta politica fo-
menta el uso de la inteligencia artificial, el Internet de las
Cosas y el Big Data para fortalecer la competitividad digi-
taly la innovacion tecnoldgica. Sin embargo, aun persisten
brechas significativas, como la desigualdad en el acceso
tecnolodgico y la escasez de profesionales especializados
en IA. En este contexto, el estudio de herramientas de
programacion asistida por IA constituye una oportunidad
estratégica para potenciar la productividad y fortalecer la
formacion profesional en ingenieria de software.

La evolucion reciente de estas herramientas demuestra
que su valor competitivo depende no solo de sus ca-
pacidades técnicas, sino también de la experiencia de
usuario, la adaptabilidad y la comprensiéon contextual
del entorno de desarrollo. Sengul et al. (2024) destacan
la necesidad de que la educacién en ingenieria de soft-
ware promueva el pensamiento critico y la adaptacion a
tecnologias emergentes. De igual modo, Gupta & Mudita
(2020) sostienen que el éxito profesional en la era digital
depende més de la integracion efectiva de la A en los flu-
jos de trabajo que del dominio de técnicas tradicionales
de programacion.

El panorama competitivo esta dominado por cuatro herra-
mientas principales: GitHub Copilot, Amazon Q Developer,
TabNine y Claude.ai. Cada una ofrece enfoques diferen-
ciados desde autocompletado contextual hasta genera-
cién conversacional de codigo que reflejan la diversidad
de necesidades y estrategias tecnoldgicas presentes en
la industria (Ziegler et al., 2024).

Ante la acelerada evolucion tecnoldgica, la evidencia
empirica sobre efectividad variable y el impulso nacional
hacia la transformacion digital, se establece la necesidad
de un andlisis comparativo riguroso. En este sentido, el
presente estudio busca evaluar la efectividad de las prin-
cipales herramientas de programacion asistida por inteli-
gencia artificial, analizando su impacto en la productivi-
dad vy la percepcion del desarrollador. Dada la naturaleza
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multidimensional de las variables involucradas, se propone aplicar el método de Mapas Cognitivos Difusos para repre-
sentar las relaciones entre factores técnicos y humanos, proporcionando una interpretacion estructurada del fenémeno.

Por tanto, el objetivo principal de esta investigacion es analizar comparativamente la efectividad de GitHub Copilot,
Amazon Q Developer, TabNine y Claude.ai en la productividad del desarrollador, utilizando Mapas Cognitivos Difusos
como método analitico central.

MATERIALES Y METODOS

La presente investigacion se enmarcé en un enfoque cuantitativo con alcance descriptivo y comparativo, comple-
mentado con el método de Mapa Cognitivo Difuso como herramienta principal de analisis y estructuracion del conoci-
miento. Se utilizé un disefio no experimental de tipo transversal, dado que los datos fueron recolectados en un unico
momento temporal, permitiendo realizar una comparacion simultanea entre distintas herramientas de programacion
asistida por inteligencia artificial.

El Método de Mapa Cognitivo Difuso constituy6 el eje metodolégico del estudio, orientado a representar y analizar las
relaciones causales entre las variables que intervienen en la percepcion y el impacto de las herramientas de inteligen-
cia artificial en la productividad del desarrollador. Este método se fundamenta en la teoria de los conjuntos difusos y
en la formalizacion cognitiva, integrando tanto el conocimiento experto como la incertidumbre inherente a los procesos
perceptuales y decisionales. En este contexto, el MCD permiti6 modelar la estructura cognitiva de los participantes,
traduciendo sus percepciones en una matriz de adyacencia cuyos valores reflejan la intensidad y direccion de las
relaciones entre factores.

Para el desarrollo del estudio se aplicaron también métodos empiricos y tedricos de apoyo. El método empirico consis-
tio en la aplicacidon de una encuesta estructurada, mientras que el método tedrico se basd en una revision sisteméatica
de literatura cientifica publicada entre 2021 y 2024, lo que permitié sustentar la seleccion de las variables y relaciones
incluidas en el modelo cognitivo difuso.

Como técnica principal de recoleccion de datos se empled la encuesta digital, implementada mediante un formu-
lario estructurado. El instrumento consistié en un cuestionario de ocho items con escala Likert de cinco puntos (1 =
Totalmente en desacuerdo, 5 = Totalmente de acuerdo), disefiado para evaluar la percepcion de los participantes so-
bre el uso de herramientas de programacion asistida por inteligencia artificial y su influencia en la productividad. Las
respuestas obtenidas fueron utilizadas como insumo para la construccion de la matriz de relaciones difusas del modelo

La poblacion objeto de estudio estuvo conformada por 89 graduados de la carrera de Ingenieria en Software de la
Universidad Regional Autdbnoma de los Andes (UNIANDES). Debido a que la poblacion no superdé los 100 individuos,
se trabaj6 con la totalidad de los graduados, evitando sesgos de muestreo.

Los datos fueron procesados mediante analisis estadistico descriptivo y andlisis difuso, permitiendo identificar tenden-
cias, niveles de aceptacion y relaciones causales entre las variables evaluadas. El procesamiento incluyé la genera-
cion de matrices de adyacencia, la normalizacion de valores y la interpretacion de los pesos difusos, como se muestra
en la tabla 1, con el propdésito de determinar los factores mas influyentes dentro del sistema cognitivo analizado.

Tabla 1: Fases metodolégicas del proceso de aplicacion del Mapa Cognitivo Difuso.

Fase Descripcion Propésito Resultado esperado

Se identificaron los factores que influyen en
la productividad y percepciéon del desarrolla- | Determinar los con-
dor frente a las herramientas de programacion | ceptos relevantes del
asistida por IA, a partir de la revision sistemati- | sistema cognitivo.

cay los resultados de la encuesta.

Lista validada de variables
criticas para el modelo.

1. ldentificacién de va-
riables

Los expertos y participantes establecieron las
relaciones entre variables, asignando valores
linguisticos (baja, media, alta influencia) que
luego se transformaron en valores numéricos
difusos.

Relaciones definidas entre
conceptos con valores de
influencia difusa.

2. Definicion de relacio-
nes causales

Capturar la estructu-
ra causal del sistema.

Se elaboré una matriz cuadrada donde cada
celda representa el grado de influencia de una
variable sobre otra, expresado mediante valo-
res difusos en el rango [-1, 1].

3. Construccién de la
matriz de adyacencia
difusa

Representar cuantita- | Matriz de adyacencia difu-
tivamente la red cog- | sa que modela las interde-
nitiva. pendencias.
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Se proceso la matriz utilizando operaciones de
composicion y normalizacion difusa para iden-
tificar las variables mas influyentes, depen-
dientes y auténomas dentro del sistema.

4. Analisis difuso e infe-
rencia

Analizar la dinamica
interna del sistema
cognitivo.

Identificacion de nodos
causales y receptores prin-
cipales.

Los resultados fueron contrastados con evi-
dencia empirica vy literatura previa para validar
la coherencia del modelo y su aplicabilidad en
contextos de desarrollo de software asistido

5. Interpretacion y vali-
dacion

Asegurar la validez y
relevancia del mode-
lo cognitivo difuso.

Modelo validado y conclu-
siones basadas en eviden-
cia empirica.

por IA.
Fuente: Elaboracion propia.

RESULTADOS-DISCUSION

Los estudios existentes proporcionan evidencia cuantitativa sobre la efectividad de las herramientas de inteligencia
artificial en tareas de desarrollo de software. GitHub Copilot demuestra una mejora de velocidad del 55.8% en tareas
controladas y un incremento del 12.92% al 21.83% en solicitudes semanales de pull requests en entornos empresaria-
les como se muestra a continuacion en la tabla 2.

Tabla 2: Cuadro Comparativo - Productividad y Velocidad.

Dimensién GitHub Copilot Amazon Q Developer TabNine Claude.ai
P1: Mejora Velocidad (Promedio) 3.91/5 3.54/5 3.17/5 2.90/5
P3: Reduce Tareas Repetitivas (Promedio) | 4.05/5 3.83/5 3.50/5 3.20/5
% Respuestas Positivas P1 (4+5) 72% 60% 45% 35%
% Respuestas Positivas P3 (4+5) 80% 70% 58% 50%

Fuente: Elaboracién propia.

La deuda técnica promedio fue de 8.9 minutos para ChatGPT, 9.1 minutos para GitHub Copilot, y 5.6 minutos para
Amazon CodeWhisperer (Yetistiren et al., 2023).

El analisis de productividad, representado graficamente en la Figura 1, revela una clara jerarquia de efectividad:
GitHub Copilot obtuvo las puntuaciones mas altas tanto en mejora de velocidad (3.91/5) como en reduccion de tareas
repetitivas (4.05/5), con un 80% de respuestas positivas. Amazon Q Developer mantuvo una posicion intermedia sdélida
(3.83/5), mientras que TabNine y Claude.ai mostraron rendimientos decrecientes.

La brecha entre GitHub Copilot y Claude.ai fue particularmente pronunciada, con una diferencia de 30 puntos porcen-
tuales en las respuestas positivas para mejora de velocidad pudiéndose observar de una mejor forma en la tabla 3.

Tabla 3: Cuadro Comparativo — Calidad del Codigo.

Dimension GitHub Copilot Amazon Q Developer TabNine Claude.ai
P2: Relevancia Contextual (Promedio) | 3.88/5 3.58/5 3.24/5 2.96/5
Siél(f):) Estandares Profesionales (Prome- 3.50/5 3.02/5 2.81/5 2.58/5
% Respuestas Positivas P2 (4+5) 72% 60% 47% 38%
% Respuestas Positivas P4 (4+5) 55% 40% 30% 22%

Fuente: Elaboracion propia.
Calidad del Cédigo y Estandares Profesionales

La evaluacion de calidad presenta los retos mas significativos para todas las herramientas. Ninguna supera el 55%
de respuestas positivas respecto a estandares profesionales, o que indica percepciones mixtas sobre la calidad del
codigo generado.

GitHub Copilot mantuvo el liderazgo con 3.88/5 en relevancia contextual, aunque desciende a 3.50/5 en estandares
profesionales. Claude.ai muestra las mayores deficiencias (solo 22% de respuestas positivas), sugiriendo limitaciones
importantes en la generacion de codigo production-ready. A continuacion, se muestra una tabla 4 con la comparativa,
no solo de Copilot y Claude.
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Tabla 4: Cuadro Comparativo — Funcionalidades Avanzadas.

Dimension GitHub Copilot Amazon Q Developer TabNine Claude.ai
P5: Facilita Aprendizaje (Promedio) 3.89/5 3.67/5 3.12/5 3.42/5
P6: Refactoring Util (Promedio) 2.95/5 3.15/5 2.71/5 3.01/5
% Respuestas Positivas P5 (4+5) 65% 55% 40% 50%
% Respuestas Positivas P6 (4+5) 35% 40% 25% 35%

Fuente: Elaboracion propia.

Este patron es consistente con lo observado en Becker et al. (2025), donde desarrolladores experimentados de codigo
abierto tomaron 19% mas tiempo al usar |A, evidenciando que las herramientas aun no alcanzan los estandares de
calidad requeridos en entornos de alta exigencia.

Andlisis Mediante Mapa Cognitivo Difuso

Para comprender las relaciones causales entre las variables evaluadas, se aplica la metodologia del Mapa Cognitivo
Difuso como herramienta principal de analisis.

ElI MCD permitié modelar la influencia reciproca entre cinco factores principales:

* Productividad percibida.

+ Calidad del codigo.

* Facilidad de aprendizaje.

* Integracion con el entorno de desarrollo (IDE).

« Satisfaccion general del usuario.

Las ponderaciones derivadas del MCD muestran que la productividad percibida (0.42) y la facilidad de aprendizaje
(0.33) fueron las variables con mayor peso causal positivo sobre la satisfacciéon general. Por otro lado, la calidad del
codigo (0.21) y la integracion IDE (0.18) mostraron una influencia indirecta mas débil.

Estos resultados coinciden con las herramientas que mejoran el flujo de trabajo y reducen la carga cognitiva, como
GitHub Copilot, obtuvieron las mayores puntuaciones de satisfaccion (3.77/5). En contraste, aquellas con deficiencias
de integracion o calidad, como Claude.ai, tuvieron una percepcion significativamente menor como se muestra en la
siguiente figura 1.

Fig 1: Modelaje del MCD.

Fuente: Elaboracion propia.

El modelo MCD, ilustrado en la figura 1, permite observar una relacion mas clara entre los componentes, pudiendo
definirse bien cada relacion.
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Funcionalidades Avanzadas y Experiencia de Usuario

El andlisis de funcionalidades avanzadas evidencia
un patrén consistente. Para facilitar el aprendizaje,
GitHub Copilot lidera con 3.89/5, seguido de Amazon Q
Developer (3.67/5). Claude.ai (3.42/5) supera ligeramente
a TabNine (3.12/5), posiblemente debido a sus capacida-
des conversacionales.

Sin embargo, las funciones de refactoring presentan las
puntuaciones mas bajas globalmente, sin herramienta al-
guna superando 3.15/5. Amazon Q Developer encabeza
marginalmente esta categoria, probablemente por su en-
foque empresarial.

En cuanto a la experiencia de usuario, GitHub Copilot
domina la integracién IDE con 4.22/5y 75% de respues-
tas positivas, reflejando su integracion nativa en el eco-
sistema Microsoft/GitHub. Claude.ai, en cambio, obtuvo
2.45/5, confirmando sus limitaciones como herramienta
de desarrollo integrada. La métrica de recomendacion
se correlaciona directamente con la satisfaccion general:
65% para Copilot y solo 23% para Claude.ai.

Los resultados convergen parcialmente con la literatura
existente, aunque muestran matices importantes. Las in-
vestigaciones de Cui et al. (2025) respaldan las mejoras
de productividad, especialmente en desarrolladores con
menor experiencia, quienes presentaron mayores ganan-
cias en eficiencia y aprendizaje.

En contraste, Becker et al. (2025) evidencia que la efec-
tividad disminuye en contextos de desarrollo avanzado,
donde la exigencia de calidad es mayor. Estos contrastes
se reflejan claramente en el MCD, donde el nodo “calidad
del cddigo” se comporta como un limitador difuso negativo
para la satisfaccion en entornos de alta especializacion.

El andlisis indica que las herramientas actuales de IA
funcionan eficazmente como asistentes cognitivos para
el aprendizaje y la automatizacion de tareas repetitivas,
pero aun no alcanzan madurez plena para sustitucion de
tareas criticas en produccion.

Proyeccion y Direcciones Futuras

En investigaciones futuras, el enfoque MCD puede am-
pliarse incorporando variables relacionadas con la ética
del cédigo generado, la gestion de la deuda técnica y
el impacto en la colaboraciéon de equipos hibridos |A-
humano. Asimismo, la expansion del modelo a muestras
de desarrolladores con distintos niveles de experticia
permitira validar de forma mas robusta las interacciones
causales detectadas en este estudio.

CONCLUSIONES

GitHub Copilot se consolidé como la herramienta mas
efectiva en la programacion asistida por inteligencia ar-
tificial, destacando en satisfaccion y productividad. Sin
embargo, persisten limitaciones en la calidad del cédigo

generado, evidenciando un equilibrio pendiente entre
velocidad y precision técnica. Las herramientas demos-
traron un valor formativo relevante, especialmente para
desarrolladores en proceso de aprendizaje. Mediante el
Mapa Cognitivo Difuso se confirmé que la productividad
percibida y la facilidad de aprendizaje fueron los factores
mas influyentes en la satisfaccion general. En conjunto,
los resultados reflejan que la adopciéon de estas tecno-
logias debe ser estratégica y contextual, priorizando en-
tornos donde potencien la eficiencia sin comprometer la
calidad profesional.
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