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RESUMEN

Esta investigación examinó de forma integral el desempeño de las principales herramientas de programación asistida 
por inteligencia artificial GitHub Copilot, Amazon Q Developer, TabNine y Claude.ai con el propósito de comprender 
su impacto en la productividad y el aprendizaje del desarrollador. La metodología se fundamentó en un enfoque mixto 
que combinó revisión sistemática de literatura reciente, aplicación de encuestas estructuradas a profesionales del área 
y el uso del método de Mapa Cognitivo Difuso (MCD) como técnica central de análisis. El MCD permitió representar 
las relaciones causales entre variables como productividad percibida, facilidad de aprendizaje, calidad del código e 
integración con el entorno de desarrollo, proporcionando una visión más precisa de las interdependencias entre estos 
factores. Los resultados evidenciaron el liderazgo de GitHub Copilot en integración y satisfacción general, aunque 
persistieron debilidades comunes en refactorización inteligente. Asimismo, se identificó una tensión entre la rapidez 
en la generación de código y la calidad profesional del producto final. El estudio concluyó que las herramientas de IA 
constituyen un recurso valioso en procesos de formación y en contextos de desarrollo ágil, pero su efectividad depen-
de de la adecuación al perfil del equipo y al tipo de proyecto. Los resultados aportan un marco empírico que favorece 
la adopción selectiva y estratégica de tecnologías de programación asistida por IA.

Palabras clave: Mapa Cognitivo Difuso, Evaluación Comparativa, Aprendizaje Automatizado, Integración de Entornos, 
Calidad del Código, Adopción Tecnológica.

ABSTRACT

This research comprehensively examined the performance of leading AI-assisted programming tools GitHub Copilot, 
Amazon Q Developer, TabNine, and Claude.ai to understand their impact on developer productivity and learning. The 
methodology was based on a mixed-method approach that combined a systematic review of recent literature, structu-
red surveys of developers, and the use of the Fuzzy Cognitive Mapping (FCM) method as the central analysis technique. 
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FCM allowed for the representation of causal relationships 
between key variables such as perceived productivity, 
ease of learning, code quality, and integration with the de-
velopment environment, providing a more precise view of 
the interdependencies between these factors. The results 
demonstrated GitHub Copilot’s leadership in integration 
and overall satisfaction, although common weaknesses in 
intelligent refactoring persisted. A tension was also iden-
tified between the speed of code generation and the pro-
fessional quality of the final product. The study concluded 
that AI tools are a valuable resource in training processes 
and agile development contexts, but their effectiveness 
depends on their suitability for the team’s profile and the 
type of project. The findings provide an empirical fra-
mework that favors the selective and strategic adoption of 
AI-assisted programming technologies.

Keywords: Fuzzy Cognitive Mapping, Benchmarking, Ma-
chine Learning, Environment Integration, Code Quality, 
Technology Adoption.

INTRODUCCIÓN

La investigación en programación asistida por inteligencia 
artificial (IA) experimenta un crecimiento sostenido desde 
2021, consolidándose como uno de los campos más di-
námicos de la ingeniería de software contemporánea. Los 
modelos de lenguaje grandes (LLMs) demuestran capa-
cidades destacadas en la generación de código, repre-
sentando un avance cualitativo en la automatización del 
desarrollo de software. Según Kokol (2024), la investiga-
ción académica en IA aplicada a la ingeniería de software 
se estructura en quince categorías y cinco temas princi-
pales, lo que evidencia la madurez del campo. Las ver-
siones recientes de ChatGPT, GitHub Copilot y Amazon 
CodeWhisperer generan código correcto el 65.2%, 46.3% 
y 31.1% del tiempo, respectivamente (Yetiştiren et al., 
2023), estableciendo parámetros cuantitativos de refe-
rencia para medir la efectividad de estas herramientas.

El desarrollo de software moderno enfrenta retos crecien-
tes en complejidad arquitectónica, rapidez de entrega y 
mantenimiento de calidad. En este contexto, la IA emer-
ge como un agente transformador capaz de asistir a los 
desarrolladores, optimizar tareas repetitivas y mejorar la 
eficiencia operativa. Su integración en el ciclo de vida del 
desarrollo de software (SDLC) representa una transición 
hacia entornos semi-autónomos, donde los profesionales 
evolucionan de codificadores manuales a orquestadores 
de sistemas inteligentes (Qiu et al., 2025). Estudios re-
cientes confirman que los desarrolladores completan ta-
reas hasta un 55.8% más rápido al utilizar asistentes de 
codificación basados en IA como GitHub Copilot, lo que 
refleja su potencial impacto en la productividad.

No obstante, la problemática persiste en que los desarro-
lladores invierten cerca del 70% de su tiempo en tareas 
repetitivas como depuración o escritura de código boi-
lerplate. Entre el 60% y el 75% de los usuarios reportan 
mayor satisfacción y menor frustración al emplear estas 
herramientas, lo que sugiere una mejora en la calidad del 
trabajo percibido. Este escenario evidencia la necesidad 
de investigaciones que evalúen de manera sistemáti-
ca y comparativa la efectividad real de la programación 
asistida por IA en entornos profesionales y académicos 
(Candelon et al., 2023).

En el contexto ecuatoriano, la adopción de tecnologías 
emergentes se consolida progresivamente en sectores 
estratégicos como educación, salud, agricultura e indus-
tria, impulsada por la Agenda de Transformación Digital 
2022–2025 del Ministerio de Telecomunicaciones y de la 
Sociedad de la Información Erazo (2024). Esta política fo-
menta el uso de la inteligencia artificial, el Internet de las 
Cosas y el Big Data para fortalecer la competitividad digi-
tal y la innovación tecnológica. Sin embargo, aún persisten 
brechas significativas, como la desigualdad en el acceso 
tecnológico y la escasez de profesionales especializados 
en IA. En este contexto, el estudio de herramientas de 
programación asistida por IA constituye una oportunidad 
estratégica para potenciar la productividad y fortalecer la 
formación profesional en ingeniería de software.

La evolución reciente de estas herramientas demuestra 
que su valor competitivo depende no solo de sus ca-
pacidades técnicas, sino también de la experiencia de 
usuario, la adaptabilidad y la comprensión contextual 
del entorno de desarrollo. Sengul et al. (2024) destacan 
la necesidad de que la educación en ingeniería de soft-
ware promueva el pensamiento crítico y la adaptación a 
tecnologías emergentes. De igual modo, Gupta & Mudita 
(2020) sostienen que el éxito profesional en la era digital 
depende más de la integración efectiva de la IA en los flu-
jos de trabajo que del dominio de técnicas tradicionales 
de programación.

El panorama competitivo está dominado por cuatro herra-
mientas principales: GitHub Copilot, Amazon Q Developer, 
TabNine y Claude.ai. Cada una ofrece enfoques diferen-
ciados desde autocompletado contextual hasta genera-
ción conversacional de código que reflejan la diversidad 
de necesidades y estrategias tecnológicas presentes en 
la industria (Ziegler et al., 2024).

Ante la acelerada evolución tecnológica, la evidencia 
empírica sobre efectividad variable y el impulso nacional 
hacia la transformación digital, se establece la necesidad 
de un análisis comparativo riguroso. En este sentido, el 
presente estudio busca evaluar la efectividad de las prin-
cipales herramientas de programación asistida por inteli-
gencia artificial, analizando su impacto en la productivi-
dad y la percepción del desarrollador. Dada la naturaleza 
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multidimensional de las variables involucradas, se propone aplicar el método de Mapas Cognitivos Difusos para repre-
sentar las relaciones entre factores técnicos y humanos, proporcionando una interpretación estructurada del fenómeno.

Por tanto, el objetivo principal de esta investigación es analizar comparativamente la efectividad de GitHub Copilot, 
Amazon Q Developer, TabNine y Claude.ai en la productividad del desarrollador, utilizando Mapas Cognitivos Difusos 
como método analítico central.

MATERIALES Y MÉTODOS

La presente investigación se enmarcó en un enfoque cuantitativo con alcance descriptivo y comparativo, comple-
mentado con el método de Mapa Cognitivo Difuso como herramienta principal de análisis y estructuración del conoci-
miento. Se utilizó un diseño no experimental de tipo transversal, dado que los datos fueron recolectados en un único 
momento temporal, permitiendo realizar una comparación simultánea entre distintas herramientas de programación 
asistida por inteligencia artificial.

El Método de Mapa Cognitivo Difuso constituyó el eje metodológico del estudio, orientado a representar y analizar las 
relaciones causales entre las variables que intervienen en la percepción y el impacto de las herramientas de inteligen-
cia artificial en la productividad del desarrollador. Este método se fundamenta en la teoría de los conjuntos difusos y 
en la formalización cognitiva, integrando tanto el conocimiento experto como la incertidumbre inherente a los procesos 
perceptuales y decisionales. En este contexto, el MCD permitió modelar la estructura cognitiva de los participantes, 
traduciendo sus percepciones en una matriz de adyacencia cuyos valores reflejan la intensidad y dirección de las 
relaciones entre factores.

Para el desarrollo del estudio se aplicaron también métodos empíricos y teóricos de apoyo. El método empírico consis-
tió en la aplicación de una encuesta estructurada, mientras que el método teórico se basó en una revisión sistemática 
de literatura científica publicada entre 2021 y 2024, lo que permitió sustentar la selección de las variables y relaciones 
incluidas en el modelo cognitivo difuso.

Como técnica principal de recolección de datos se empleó la encuesta digital, implementada mediante un formu-
lario estructurado. El instrumento consistió en un cuestionario de ocho ítems con escala Likert de cinco puntos (1 = 
Totalmente en desacuerdo, 5 = Totalmente de acuerdo), diseñado para evaluar la percepción de los participantes so-
bre el uso de herramientas de programación asistida por inteligencia artificial y su influencia en la productividad. Las 
respuestas obtenidas fueron utilizadas como insumo para la construcción de la matriz de relaciones difusas del modelo

La población objeto de estudio estuvo conformada por 89 graduados de la carrera de Ingeniería en Software de la 
Universidad Regional Autónoma de los Andes (UNIANDES). Debido a que la población no superó los 100 individuos, 
se trabajó con la totalidad de los graduados, evitando sesgos de muestreo.

Los datos fueron procesados mediante análisis estadístico descriptivo y análisis difuso, permitiendo identificar tenden-
cias, niveles de aceptación y relaciones causales entre las variables evaluadas. El procesamiento incluyó la genera-
ción de matrices de adyacencia, la normalización de valores y la interpretación de los pesos difusos, como se muestra 
en la tabla 1, con el propósito de determinar los factores más influyentes dentro del sistema cognitivo analizado.

Tabla 1: Fases metodológicas del proceso de aplicación del Mapa Cognitivo Difuso.

Fase Descripción Propósito Resultado esperado

1. Identificación de va-
riables

Se identificaron los factores que influyen en 
la productividad y percepción del desarrolla-
dor frente a las herramientas de programación 
asistida por IA, a partir de la revisión sistemáti-
ca y los resultados de la encuesta.

Determinar los con-
ceptos relevantes del 
sistema cognitivo.

Lista validada de variables 
críticas para el modelo.

2. Definición de relacio-
nes causales

Los expertos y participantes establecieron las 
relaciones entre variables, asignando valores 
lingüísticos (baja, media, alta influencia) que 
luego se transformaron en valores numéricos 
difusos.

Capturar la estructu-
ra causal del sistema.

Relaciones definidas entre 
conceptos con valores de 
influencia difusa.

3. Construcción de la 
matriz de adyacencia 
difusa

Se elaboró una matriz cuadrada donde cada 
celda representa el grado de influencia de una 
variable sobre otra, expresado mediante valo-
res difusos en el rango [-1, 1].

Representar cuantita-
tivamente la red cog-
nitiva.

Matriz de adyacencia difu-
sa que modela las interde-
pendencias.
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4. Análisis difuso e infe-
rencia

Se procesó la matriz utilizando operaciones de 
composición y normalización difusa para iden-
tificar las variables más influyentes, depen-
dientes y autónomas dentro del sistema.

Analizar la dinámica 
interna del sistema 
cognitivo.

Identificación de nodos 
causales y receptores prin-
cipales.

5. Interpretación y vali-
dación

Los resultados fueron contrastados con evi-
dencia empírica y literatura previa para validar 
la coherencia del modelo y su aplicabilidad en 
contextos de desarrollo de software asistido 
por IA.

Asegurar la validez y 
relevancia del mode-
lo cognitivo difuso.

Modelo validado y conclu-
siones basadas en eviden-
cia empírica.

Fuente: Elaboración propia.

RESULTADOS-DISCUSIÓN

Los estudios existentes proporcionan evidencia cuantitativa sobre la efectividad de las herramientas de inteligencia 
artificial en tareas de desarrollo de software. GitHub Copilot demuestra una mejora de velocidad del 55.8% en tareas 
controladas y un incremento del 12.92% al 21.83% en solicitudes semanales de pull requests en entornos empresaria-
les como se muestra a continuación en la tabla 2.

Tabla 2: Cuadro Comparativo - Productividad y Velocidad.

Dimensión GitHub Copilot Amazon Q Developer TabNine Claude.ai

P1: Mejora Velocidad (Promedio) 3.91/5 3.54/5 3.17/5 2.90/5

P3: Reduce Tareas Repetitivas (Promedio) 4.05/5 3.83/5 3.50/5 3.20/5

% Respuestas Positivas P1 (4+5) 72% 60% 45% 35%

% Respuestas Positivas P3 (4+5) 80% 70% 58% 50%
Fuente: Elaboración propia.

La deuda técnica promedio fue de 8.9 minutos para ChatGPT, 9.1 minutos para GitHub Copilot, y 5.6 minutos para 
Amazon CodeWhisperer (Yetiştiren et al., 2023).

El análisis de productividad, representado gráficamente en la Figura 1, revela una clara jerarquía de efectividad: 
GitHub Copilot obtuvo las puntuaciones más altas tanto en mejora de velocidad (3.91/5) como en reducción de tareas 
repetitivas (4.05/5), con un 80% de respuestas positivas. Amazon Q Developer mantuvo una posición intermedia sólida 
(3.83/5), mientras que TabNine y Claude.ai mostraron rendimientos decrecientes.

La brecha entre GitHub Copilot y Claude.ai fue particularmente pronunciada, con una diferencia de 30 puntos porcen-
tuales en las respuestas positivas para mejora de velocidad pudiéndose observar de una mejor forma en la tabla 3.

Tabla 3: Cuadro Comparativo – Calidad del Código.

Dimensión GitHub Copilot Amazon Q Developer TabNine Claude.ai

P2: Relevancia Contextual (Promedio) 3.88/5 3.58/5 3.24/5 2.96/5

P4: Estándares Profesionales (Prome-
dio) 3.50/5 3.02/5 2.81/5 2.58/5

% Respuestas Positivas P2 (4+5) 72% 60% 47% 38%

% Respuestas Positivas P4 (4+5) 55% 40% 30% 22%
Fuente: Elaboración propia.

Calidad del Código y Estándares Profesionales

La evaluación de calidad presenta los retos más significativos para todas las herramientas. Ninguna supera el 55% 
de respuestas positivas respecto a estándares profesionales, lo que indica percepciones mixtas sobre la calidad del 
código generado.

GitHub Copilot mantuvo el liderazgo con 3.88/5 en relevancia contextual, aunque desciende a 3.50/5 en estándares 
profesionales. Claude.ai muestra las mayores deficiencias (solo 22% de respuestas positivas), sugiriendo limitaciones 
importantes en la generación de código production-ready. A continuación, se muestra una tabla 4 con la comparativa, 
no solo de Copilot y Claude.
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Tabla 4: Cuadro Comparativo – Funcionalidades Avanzadas.

Dimensión GitHub Copilot Amazon Q Developer TabNine Claude.ai

P5: Facilita Aprendizaje (Promedio) 3.89/5 3.67/5 3.12/5 3.42/5

P6: Refactoring Útil (Promedio) 2.95/5 3.15/5 2.71/5 3.01/5

% Respuestas Positivas P5 (4+5) 65% 55% 40% 50%

% Respuestas Positivas P6 (4+5) 35% 40% 25% 35%
Fuente: Elaboración propia.

Este patrón es consistente con lo observado en Becker et al. (2025), donde desarrolladores experimentados de código 
abierto tomaron 19% más tiempo al usar IA, evidenciando que las herramientas aún no alcanzan los estándares de 
calidad requeridos en entornos de alta exigencia.

Análisis Mediante Mapa Cognitivo Difuso

Para comprender las relaciones causales entre las variables evaluadas, se aplica la metodología del Mapa Cognitivo 
Difuso como herramienta principal de análisis.

El MCD permitió modelar la influencia recíproca entre cinco factores principales:

	• Productividad percibida.

	• Calidad del código.

	• Facilidad de aprendizaje.

	• Integración con el entorno de desarrollo (IDE).

	• Satisfacción general del usuario.
Las ponderaciones derivadas del MCD muestran que la productividad percibida (0.42) y la facilidad de aprendizaje 
(0.33) fueron las variables con mayor peso causal positivo sobre la satisfacción general. Por otro lado, la calidad del 
código (0.21) y la integración IDE (0.18) mostraron una influencia indirecta más débil.

Estos resultados coinciden con las herramientas que mejoran el flujo de trabajo y reducen la carga cognitiva, como 
GitHub Copilot, obtuvieron las mayores puntuaciones de satisfacción (3.77/5). En contraste, aquellas con deficiencias 
de integración o calidad, como Claude.ai, tuvieron una percepción significativamente menor como se muestra en la 
siguiente figura 1.

Fig 1: Modelaje del MCD.

Fuente: Elaboración propia.

El modelo MCD, ilustrado en la figura 1, permite observar una relación más clara entre los componentes, pudiendo 
definirse bien cada relación.
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Funcionalidades Avanzadas y Experiencia de Usuario

El análisis de funcionalidades avanzadas evidencia 
un patrón consistente. Para facilitar el aprendizaje, 
GitHub Copilot lidera con 3.89/5, seguido de Amazon Q 
Developer (3.67/5). Claude.ai (3.42/5) supera ligeramente 
a TabNine (3.12/5), posiblemente debido a sus capacida-
des conversacionales.

Sin embargo, las funciones de refactoring presentan las 
puntuaciones más bajas globalmente, sin herramienta al-
guna superando 3.15/5. Amazon Q Developer encabeza 
marginalmente esta categoría, probablemente por su en-
foque empresarial.

En cuanto a la experiencia de usuario, GitHub Copilot 
domina la integración IDE con 4.22/5 y 75% de respues-
tas positivas, reflejando su integración nativa en el eco-
sistema Microsoft/GitHub. Claude.ai, en cambio, obtuvo 
2.45/5, confirmando sus limitaciones como herramienta 
de desarrollo integrada. La métrica de recomendación 
se correlaciona directamente con la satisfacción general: 
65% para Copilot y solo 23% para Claude.ai.

Los resultados convergen parcialmente con la literatura 
existente, aunque muestran matices importantes. Las in-
vestigaciones de Cui et al. (2025) respaldan las mejoras 
de productividad, especialmente en desarrolladores con 
menor experiencia, quienes presentaron mayores ganan-
cias en eficiencia y aprendizaje.

En contraste, Becker et al. (2025) evidencia que la efec-
tividad disminuye en contextos de desarrollo avanzado, 
donde la exigencia de calidad es mayor. Estos contrastes 
se reflejan claramente en el MCD, donde el nodo “calidad 
del código” se comporta como un limitador difuso negativo 
para la satisfacción en entornos de alta especialización.

El análisis indica que las herramientas actuales de IA 
funcionan eficazmente como asistentes cognitivos para 
el aprendizaje y la automatización de tareas repetitivas, 
pero aún no alcanzan madurez plena para sustitución de 
tareas críticas en producción.

Proyección y Direcciones Futuras

En investigaciones futuras, el enfoque MCD puede am-
pliarse incorporando variables relacionadas con la ética 
del código generado, la gestión de la deuda técnica y 
el impacto en la colaboración de equipos híbridos IA-
humano. Asimismo, la expansión del modelo a muestras 
de desarrolladores con distintos niveles de experticia 
permitirá validar de forma más robusta las interacciones 
causales detectadas en este estudio.

CONCLUSIONES

GitHub Copilot se consolidó como la herramienta más 
efectiva en la programación asistida por inteligencia ar-
tificial, destacando en satisfacción y productividad. Sin 
embargo, persisten limitaciones en la calidad del código 

generado, evidenciando un equilibrio pendiente entre 
velocidad y precisión técnica. Las herramientas demos-
traron un valor formativo relevante, especialmente para 
desarrolladores en proceso de aprendizaje. Mediante el 
Mapa Cognitivo Difuso se confirmó que la productividad 
percibida y la facilidad de aprendizaje fueron los factores 
más influyentes en la satisfacción general. En conjunto, 
los resultados reflejan que la adopción de estas tecno-
logías debe ser estratégica y contextual, priorizando en-
tornos donde potencien la eficiencia sin comprometer la 
calidad profesional.
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