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RESUMEN

Los modelos de aprendizaje automático pueden desentrañar patrones complejos en la señal electrocardiográfica 
(ECG), imperceptibles incluso para especialistas, lo que tiene un gran valor para la medicina preventiva personalizada. 
Un indicador de especial relevancia es la estimación de la edad fisiológica a partir del ECG, la cual, al compararse con 
la edad cronológica, refleja el estado real del sistema cardiovascular y permite identificar un envejecimiento vascular 
acelerado.

Este estudio aplicó 9 fractales a tres segmentos del ECG de 12 derivaciones, utilizando clasificadores MLP (redes 
neuronales sencillas) para: 1) evaluar la capacidad de estos fractales para captar los cambios en el ECG asociados a 
la edad, y 2) identificar en qué segmento reside principalmente esa información. Se clasificó a los individuos en cate-
gorías de edad, destacando un umbral de 50 años.

Los resultados muestran una precisión del 75% en la clasificación binaria (mayor/menor de 50 años) utilizando los 
valores fractales combinados, sin diferencias entre los segmentos analizados. Aunque modestos, estos hallazgos son 
prometedores. Demuestran que métodos de IA sencillos y de bajo costo, como el MLP, pueden integrarse en herra-
mientas de apoyo a la decisión clínica. Esto sienta las bases para desarrollar sistemas accesibles que, mediante un 
ECG rutinario, ayuden a evaluar el riesgo cardiovascular individual y promover intervenciones preventivas personali-
zadas de manera temprana.
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ABSTRACT

Machine learning models can unravel complex patterns 
in the electrocardiographic (ECG) signal, imperceptible 
even to specialists, which holds great value for persona-
lized preventive medicine. A particularly relevant indica-
tor is the estimation of physiological age from the ECG, 
which, when compared with chronological age, reflects 
the real state of the cardiovascular system and allows for 
the identification of accelerated vascular aging.

This study applied 9 fractal measures to three segments of 
the 12‑lead ECG, using Multilayer Perceptron (MLP) clas-
sifiers—simple neural networks—to: 1) evaluate the ability 
of these fractal measures to capture age‑related changes 
in the ECG, and 2) identify in which segment this informa-
tion primarily resides. Individuals were classified into age 
categories, with a threshold of 50 years being highlighted.

The results show a 75% accuracy in the binary classifi-
cation (older/younger than 50 years) using the combined 
fractal values, with no differences among the analyzed 
segments. Although modest, these findings are promising. 
They demonstrate that simple, low‑cost AI methods, such 
as the MLP, can be integrated into clinical decision‑sup-
port tools. This lays the groundwork for developing ac-
cessible systems that, through a routine ECG, can help 
assess individual cardiovascular risk and promote early, 
personalized preventive interventions.

Keywords: fractal dimension, cardiac age/heart age esti-
mation, preventive medicine, ECG/EKG signal

INTRODUCCIÓN

La estimación de la edad biológica a partir del electrocar-
diograma (ECG) constituye un objetivo de gran relevancia 
en la medicina moderna, ya que trasciende el mero diag-
nóstico para posicionarse como un pilar de la prevención 
personalizada. La señal ECG, un indicador fundamental 
de la función cardíaca, experimenta modificaciones suti-
les pero sistemáticas con el envejecimiento. La decodifi-
cación de estos cambios no solo permite una evaluación 
más precisa del riesgo cardiovascular individual, sino que 
también representa un puente directo entre la investiga-
ción universitaria y las necesidades de la sociedad, al tra-
ducir avances metodológicos en herramientas aplicables 
para la salud pública. 

No obstante, este esfuerzo científico enfrenta una com-
plejidad inherente: los parámetros electrocardiográficos 
dependen de una multiplicidad de factores fisiológicos y 
técnicos, más allá de la edad cronológica. Esta variabili-
dad intrínseca exige el empleo de muestras poblaciona-
les extensas y diseños de estudio rigurosos “idealmente 
longitudinales” para aislar el efecto del envejecimiento y 
minimizar los sesgos, como el efecto cohorte, propios de 
los enfoques transversales predominantes por limitacio-
nes prácticas.

En 1954 Packard presenta el seguimiento, en 10 años, de 
un trabajo comenzado en 1944 por Graybiel et al. (1944), 
que constituye uno de los primeros estudios sobre el 
efecto del envejecimiento sobre la forma de onda de la 
señal ECG del tipo longitudinal registrado. Se determina 
que el pulso aumenta en promedio de 64 a 75 pulsacio-
nes por minuto, el intervalo P-R aumenta de 0.154 a 0.159 
segundos no obstante el aumento en pulso; el promedio 
de duración de QRS cambia muy ligeramente de 0.087 a 
0.085 segundos y el promedio de intervalos Q-T no corre-
gidos disminuya de 0.384 a 0.361 segundos, el eje QRS 
se mueve hacia la izquierda de 61.6 a 48.2 grados y el eje 
de T igualmente se mueve ligeramente hacia la izquierda 
de 42.6 a 40.7 grados (Packard et al., 1954).

En 1967, Blackburn presenta un estudio hipotetizando so-
bre sí las tendencias en la señal ECG relacionadas con 
la edad reflejan alguna arteriopatía coronaria latente en 
individuos o en poblaciones; el estudio concluye que con 
el envejecimiento las amplitudes de las ondas QRS y T 
decrecen; hay migración del eje del plano frontal izquier-
do del complejo QRS y posible rotación del plano medio 
horizontal posterior QRS; la frecuencia cardíaca disminu-
ye y hay una prolongación del intervalo P-R; siendo estas 
tendencias comunes al envejecimiento (Blackburn et al., 
1967). 

En 1972, Simonson describe en un estudio transversal 
las tendencias electrocardiográficas relacionadas con 
la edad; concluyendo que, las amplitudes de todas las 
deflexiones decrecen junto con cambios direccionales, 
pero que las tendencias relacionadas con los intervalos 
no existen o son muy pequeñas; concluyendo que las 
tendencias en la señal ECG relacionadas con la edad en 
poblaciones asintomáticas son en gran medida debido a 
una arteriopatía coronaria latente (Simonson, 1972).

En 1981, Bachman et al. examinan los cambios electro-
cardiográficos relacionados con el envejecimiento en un 
estudio longitudinal, basado en dos revisiones con un in-
tervalo de 10 años, para determinar si las diferencias elec-
trocardiográficas previamente demostradas en estudios 
trasversales representan las tendencias electrocardiográ-
ficas con la edad en el caso longitudinal para una misma 
población. Se determinó que los cambios longitudinales 
fueron consistentes con los resultados trasversales; y 
que la duración de los intervalos P-R y Q-T fue mayor, 
pero la duración del complejo QRS menor y la amplitud 
de la onda T fue menor; concluyéndose que algunas de 
las diferencias resultantes de estudios transversales re-
lacionadas con la edad verdaderamente representan las 
tendencias electrocardiográficas obtenidas en estudios 
longitudinales (Bachman et al., 1981).

En 1990, Jones et al. presentan una discusión sobre las 
características del electrocardiograma en el envejeci-
miento; concluyendo que, los cambios histológicos que 
ocurren en el sistema de conducción cardíaco pueden 
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alterar muchas de las características del electrocardio-
grama en los ancianos: es común la pérdida de ampli-
tud, o la supresión de la onda P; la duración del intervalo 
P-R puede incrementarse en un 10% pudiendo alcanzar 
hasta un 35% en ancianos nonagenarios; la duración del 
complejo QRS tiende a aumentar y las amplitudes de las 
ondas R y S decrecen, así como el vector medio QRS se 
orienta hacia la izquierda en el plano frontal y posterior-
mente en el plano horizontal; y el segmento S-T se aplana 
(Jones et al., 1990).

En 1994 Macfarlane et al estudia los efectos de la edad, la 
raza y el sexo en el ECG usando un grupo pediátrico; un 
grupo adulto blanco; y una cohorte de población china.  
Se demuestra que en el grupo pediátrico existe una rela-
ción directa entre la edad y la duración de QRS, que se 
incrementa linealmente desde aproximadamente 1 año 
de edad hasta la adolescencia; en los adultos las princi-
pales diferencias fueron un incremento de la duración de 
QRS en hombres comparados con mujeres y se pudieron 
ver algunas diferencias raciales pequeñas en algunos pa-
rámetros, pero sin significancia clínica (Macfarlane et al., 
1994).

En 2003, se presentan un estudio sobre las anormalida-
des en la señal ECG debidas al envejecimiento. El estudio 
analiza las diferencias transversales en las señales ECG 
en tres cohortes de 70 años de edad en un periodo de 30 
años desde 1901/02 hasta 1930; los cambios longitudi-
nales ocurridos en las señales ECG de la cohorte trans-
curridos 15 años; y la relación entre las anormalidades 
encontradas en las señales ECG de la cohorte I a la edad 
de 70 años y la mortalidad subsecuente entre los siguien-
tes 10 o 15 años; en las comparaciones transversales 
se determinó que existían menos anormalidades en las 
cohortes menos antiguas para ambos sexos. Durante el 
seguimiento longitudinal de 15 años, se registra un incre-
mento significativo, tanto en hombres como en mujeres, 
respecto a ondas Q largas o intermedias, desviación del 
eje izquierdo, ondas T negativas (0-5mm), bloqueo com-
pleto de rama derecha y fibrilación atrial. Se concluye que 
las anormalidades en la señal ECG son frecuentes en el 
envejecimiento y están asociadas con un incremento de 
la mortalidad (Molander et al., 2003).

Ya en el 2011, se presentan en un estudio la relación ge-
neral entre las anomalías electrocardiográficas y el avan-
ce de la edad, demostrándose que aparece desviación 
del eje izquierdo; bradicardia sinodal, anormalidades en 
las ondas S-T y T; bloqueo de rama; hipertrofia ventricular 
izquierda, patrones Q y Q-S; latidos prematuros ventricu-
lares y desviación del eje derecho; se encontró también 
una alta prevalencia de anormalidades en las ondas S-T 
y T, hipertrofia ventricular izquierda y bradicardia sinodal; 
concluyéndose que existe un incremento significativa-
mente alto en la prevalencia de anormalidades en el ECG 
al avanzar la edad (Khane et al., 2011).

Posteriormente en 2014, se presentan un estudio para 
establecer y actualizar el conjunto de valores normales 
en el ECG clínico para ambos sexos; como resultado se 
corroboran muchas de las recomendaciones de estudios 
previos, y además se proporcionan otros resultados di-
ferenciados particularmente para los grupos de mayor 
edad, con tendencias aparentes para el intervalo QTc, 
el eje QRS, e índices de hipertrofia ventricular izquierda; 
las amplitudes en las derivaciones precordiales izquier-
das mostraron un incremento sustancial en los grupos de 
mayor edad para el caso de las mujeres (Rijnbeek et al., 
2014).

En 2018, en un estudio sobre la relación entre la edad y el 
sexo, y la forma de onda ECG determina que en el caso 
de la amplitud de la onda P existe una dependencia re-
lacionada con la edad en V1 y V2; en el caso de QRS se 
registran cambios en la amplitud significativos entre la ni-
ñez a la adolescencia, y en el caso de la adultez se regis-
tran cambios en la amplitud promedio de la onda S en la 
derivación V2, cambios similares pueden verse también 
en la amplitud de la onda R en V5; la duración de QRS 
registra un aumento en el caso de hombres adultos; y las 
amplitudes de la onda S-T resultan mayores en hombres 
jóvenes comparados con mujeres jóvenes y tienden a dis-
minuir con el incremento de la edad (Macfarlane, 2018).

Mas cercano, en el 2023, se presentan un estudio sobre 
las diferencias en el ECG relacionadas con la edad y el 
género; se determina que en los grupos con edades com-
prendidas entre los 35 a 65 años, la duración de QRS 
se mantuvo casi estable, prolongándose para el caso del 
grupo con edad mayor de 65 años; en el caso de la du-
ración de las ondas P y P-R, se nota un incremento ligero 
pero constante con la edad; respecto al eje de QRS se 
nota una desviación a la izquierda particularmente a par-
tir de los 65 años (Ahmadi et al., 2023).

Estos estudios demuestran que la edad tiene influencias 
significativas sobre la forma de onda de la señal ECG, sin 
embargo, aunque con puntos en común no son suficien-
tes como para establecer conclusiones definitivas. Sigue 
siendo un tema pendiente el estudio del efecto de la edad 
sobre la forma de onda de la señal ECG debido a su com-
plejidad y dependencia de otras variables.

La aplicación de los rasgos fractales a señales ECG y 
su cuantificación a través de la Dimensión Fractal (FD), 
como un indicador de los cambios de la complejidad de 
la señal asociados con la edad, se reporta en muy pocos 
trabajos y con resultados bastante difusos.

El término fractales (fracturado), propuesto por Mandelbrot 
(1983), se aplica a objetos en el espacio que poseen una 
forma de auto-similitud y no pueden ser descritos en una 
sola escala de medida absoluta; está referido a objetos 
que poseen un patrón repetitivo que es similar en varias 
escalas y que es cuantificable. 
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Por otro lado, la FD es un índice, generalmente irracional, 
utilizado para cuantificar las propiedades fractales de un 
objeto y constituye un punto de vista alternativo del con-
cepto de dimensión que se basa en la auto-similitud de 
un objeto, en lugar de en la geometría euclidiana (Kumar 
et al., 2017).

En 2003, se concluye que el ECG se puede caracterizar 
por la multifractalidad y que las diferentes derivaciones 
tienen diferentes valores mostrando algún tipo de dis-
tribución multifractal; que el valor del área del espectro 
multifractal de los ECG de individuos de sexo masculino 
refleja la fortaleza del control del sistema nervioso autóno-
mo del cuerpo sobre el corazón y por extensión sobre las 
fallas cardíacas; y que el logaritmo del área del espectro 
multifractal de los ECG es inversamente proporcional a la 
edad, lo cual implica que para personas más envejecidas 
el impacto del control del sistema nervioso autónomo so-
bre las propiedades multifractales del ECG se debilita y el 
espectro multifractal decrece de multifractal a monofrac-
tal (Wang et al., 2003).

En 2014, se realizan un análisis de las características frac-
tales de señales ECG y su correlación con los valores de 
ECG normales y patológicos; como resultado obtuvieron 
una marca fractal de acuerdo a la edad y las patologías 
de los casos estudiados (Sedjelmaci & Bereksi-Reguig, 
2014).

En 2016, Dasgupta desarrolló una Red Neuronal (NN) 
para determinar la edad humana a partir de un vector de 
entrada compuesto por los valores de FD de Katz de la 
señal ECG, la frecuencia de sus complejos QRS, el sexo 
del paciente y el promedio de la distancia entre picos R 
sucesivos; como resultado obtiene un valor medio del 
error, para el conjunto de prueba, de 0.79 años con una 
desviación estándar de 2.70 años; lo cual implica que 
aproximadamente el 68.2% de los resultados inferidos, 
normalmente distribuidos, están dentro del rango de error 
de -1.9 a 3.5 años para el caso del conjunto de prue-
ba; considerando que la NN produce una buena aproxi-
mación de la edad para un individuo normal (Dasgupta, 
2016).

En 2018, se proponen utilizar una técnica multifractal 
para analizar clasificaciones relacionadas con la edad 
basada en la difusificación de la técnica de Dimensión 
Fractal Generalizada (GFD) aplicada a los intervalos di-
námicos de ritmo cardiaco en señales ECG; se conclu-
ye que el método Fuzy-GFD categoriza sujetos jóvenes y 
viejos con mayor precisión que con el método típico GFD 
(Easwaramoorthy et al., 2018).

El presente trabajo se basa en la aplicación de 9 métodos 
de FD: Higuchi (Higuchi, 1988), Katz (Katz, 1988), line 
length (Esteller et al., 2001), NLD (Kalauzi et al., 2009), 

Petrosian (Petrosian, 1995), Sevcik (Sevcik, 2010), Power 
Spectral Density slope (Hasselman, 2013), Correlation 
Dimension (Boon et al., 2008) y Hurst (Annis & Lloyd, 
1976); sobre 3 segmentos de señales ECG. Los arreglos 
de valores obtenidos se utilizan para entrenar clasifica-
dores Multi-Layer Perceptrons (MLP) y discernir entre 
clases de edades conformadas por intervalos de edades 
cronológicas con diferentes grados de especificidad. El 
objetivo consiste en: 

1.	 determinar con que precisión un clasificador MLP ba-
sado solamente en los rasgos de dimensión fractal es 
capaz de inferir la edad de un individuo a partir de su 
señal ECG;

2.	 determinar en cuál de los tres segmentos de señal 
definidos, P-R, PQRST o R-T, pudiera encontrarse co-
dificada la información cronológica extraída por los 
fractales; y

Muchos de los trabajos relacionados con la aplicación de 
rasgos de FD sobre señales ECG, usan además rasgos 
basados en factores de riesgo cardíaco como son el ín-
dice de masa corporal, las adicciones, las enfermedades 
de base, etc; y rasgos basados en análisis clínicos y otras 
pruebas como el nivel de colesterol en sangre, y el índice 
de calcificaciones coronarias, etc; para mejorar la estima-
ción de la edad cardíaca. El presente trabajo se basa solo 
en la utilización de los rasgos de dimensión fractal para 
evaluar sus potencialidades en el registro de los cambios 
de la señal ECG producto de la edad.

La estimación de la edad biológica a través del ECG re-
presenta un avance significativo hacia la medicina pre-
ventiva personalizada, al ofrecer un indicador no invasivo 
y accesible del estado funcional del sistema cardiovas-
cular. A diferencia de la edad cronológica, este marcador 
refleja el desgaste fisiológico individual y puede identi-
ficar precozmente alteraciones asociadas al envejeci-
miento vascular, permitiendo intervenciones tempranas 
y estrategias preventivas adaptadas al riesgo específico 
de cada paciente. La integración de técnicas computa-
cionales, como el análisis fractal y modelos de aprendiza-
je automático, posibilita la extracción de patrones sutiles 
y complejos de la señal ECG, transformando un estudio 
de rutina en una herramienta pronóstica y de seguimiento 
dinámico de la salud cardiovascular, con potencial para 
optimizar la toma de decisiones clínicas en el ámbito de 
la prevención y el envejecimiento saludable.

MATERIALES Y MÉTODOS

El presente trabajo utilizó 9694 registros de ECG clínico 
de 12 derivaciones, clasificados como normales pertene-
cientes a la base de datos SPH dataset (Liu et al., 2022). 
La SPH dataset incluye anotaciones de diagnóstico es-
tandarizado conforme a la norma AHA/ACC/HRS (code.
csv), y otros datos de interés (metadata.csv) (Figura. 1). 
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Fig 1: Estructura de ficheros de la SPH dataset

Fuente: tomado de Liu et al. (2022)

La frecuencia de muestreo de cada señal ECG es de 
500Hz y la longitud de los registros varía de 10 a 60 se-
gundos. Cada registro ECG, en formato Hierarchical Data 
Format (“The HDF5® Library & File Format,” n.d.), es un 
arreglo de 12derivaciones x Nmuestras.

Para el desarrollo del trabajo, a la estructura de la base 
de datos, originalmente conformada por un dataset HDF, 
conteniendo cada registro ECG, se incluye:

a)	 un dataset HDF (ECG_R_Peaks) que contiene los 
puntos fiduciales R de cada señal ECG;

b)	 un grupo HDF (Fractal_Dimension_P-R) que contie-
ne los datasets HDF correspondientes de aplicar los 9 
rasgos de FD a los segmentos P-R ([150samples - Rpoint : 
Rpoint]) de cada señal ECG; 

c)	 un grupo HDF (Fractal_Dimension_PQRST) que con-
tiene los datasets HDF correspondientes de aplicar 
9 rasgos de FD a los segmentos PQRST ([150samples - 
Rpoint : Rpoint + 150samples]) de cada señal ECG; y

d)	 un grupo HDF (Fractal_Dimension_R-T) que contie-
ne los datasets HDF correspondientes de aplicar los 
9 rasgos de FD a los segmentos R-T ([Rpoint : Rpoint + 
150samples]) de cada señal ECG.

En la Figura. 2 se muestra la estructura de la base de da-
tos de prueba, para el registro A00002.h5; puede verse el 
dataset HDF ECG_R_Peaks, y los grupos HDF Fractal_
Dimension_P-R/PQRST/RT, con los 9 datasets HDF co-
rrespondientes a cada rasgo.

Fig 2: Detalle del registro ECG A00005.h5 usando HDF-
View 

Fuente: Elaboración propia.

El fichero metadata.csv se modificó conteniendo ade-
más de los identificativos de cada registro (ECG_ID) y el 
atributo Age, 4 nuevos atributos categóricos adicionales 
resultantes de agrupar las edades por intervalos con dife-
rentes grados de especificidad, Figura. 3.

Fig 3: Estructura de ficheros de la base de datos de prue-
ba.

Fuente: Elaboración propia.

Los nuevos atributos objetivos, derivados del atributo 
Age, se definieron como:

	• Age_class_0: agrupamiento de las edades cronológi-
cas en 9 clases con intervalos de 10 años;

	• Age_class_1: agrupamiento de las edades cronológi-
cas en 5 clases con intervalos de 20 años;

	• Age_class_2: agrupamiento de las edades cronológi-
cas en 3 clases con intervalos de 30 años;

	• Age_class_3: agrupamiento de las edades cronológi-
cas en 2 clases con intervalos de 40 años.

Esta estrategia de derivar el atributo objetivo Age, agru-
pando las edades, tiene el propósito de simplificar el mo-
delo de aprendizaje, asumiendo que existen característi-
cas similares en estos intervalos de edades que permiten 
su agrupación; y de proporcionar varios atributos objetivo 
con diferentes niveles de detalle para determinar en qué 
grado los rasgos de dimensión fractal logran captar los 
cambios que aparecen en las señales ECG relacionados 
con la edad.

En la definición de las clases de edades se sigue una 
estrategia de agrupamiento por ancho fijo, con rangos de 
edades linealmente escaladas, sin considerar intervalos 
de edad cardíaca, debido a que su definición es actual-
mente un tema en estudio y aunque existen algunas refe-
rencias basadas en los criterios de riesgo de Framingham 
(Framingham Heart Study, n.d.), muchos trabajos son dis-
cretos en su recomendación (Álvarez, 2001).

Las características del atributo objetivo Age se resumen 
en la Tabla 1.
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Tabla 1: Descripción del atributo objetivo Age.

Age mean Std min 25% 50% 75% max

46.93 13.89 18.00 36.00 46.00 56.00 95.00
Fuente: Elaboración propia.

La edad media es de 46 años y el 75% de las edades de los pacientes están por debajo de los 56 años; por tanto, es 
necesario considerar esta particularidad de los datos a la hora de seleccionar la estrategia de muestreo de forma tal 
que exista representatividad en los conjuntos de entrenamiento, validación y prueba. Los histogramas de los 4 atribu-
tos objetivo se muestran en la Figura. 4, y resaltan con mayor detalle las características de sus distribuciones.

Fig 4: Histograma de los atributos objetivos Age_class_0, …, Age_class_3 (izq-der, arriba-abajo).

Fuente: Elaboración propia.

En resumen, cada registro ECG de la base de datos de prueba, contiene los 3 grupos contenedores creados, Fractal_
Dimension_P-R, Fractal_Dimension_PQRST y Fractal_Dimension_R-T, correspondientes a los tres segmentos de 
señal definidos; y en cada grupo HDF existen 9 datasets HDF que son arreglos de 12derivaciones x (M+3)valores, siendo M 
la cantidad de valores resultantes de aplicar los 9 fractales en estudio al segmento de señal correspondiente. Las 
posiciones relativas a las 3 muestras agregadas en cada dataset HDF contienen la media, mediana y varianza de los 
valores fractales por cada derivación y se incluyeron con propósitos estadísticos y de reducción de la dimensionalidad 
de los atributos predictores.

Para la detección de los puntos fiduciales R, utilizados como referencia para definir los segmentos de señal, se utiliza-
ron los algoritmos de detección proporcionados por el paquete NeuroKit2 (Makowski et al., 2021), que es un paquete 
open-source de algoritmos desarrollados en lenguaje Python para el procesamiento de señales neurofisiológicas.

El procedimiento de prueba está orientado principalmente a evaluar la sensibilidad de los 9 rasgos de FD de estudio, 
obtenidos sobre 3 segmentos de señal, sobre los atributos objetivos de intervalos de edades. La secuencia de pasos 
que se siguió, define como:

	• creación de los dataframes (arreglo de pandas) de atributos predictores y atributos objetivos;

	• creación de los conjuntos de entrenamiento, validación y prueba utilizando la validación cruzada de K iteraciones 
(K-fold cross validation);

	• desarrollo de clasificadores Multi-Layer Perceptrons (MLP), Figura. 5;

	• análisis de los resultados basado en las medidas de precisión para cada modelo.
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Todo la implementación utiliza el lenguaje Python y los paquetes NumPy, pandas, Matplotlib, Seaborn, NeuroKit, Scikit-
learn, y Keras (PyPI · El Índice de paquetes de Python, n.d.).

Fig 5: Arquitectura de los modelos MLP desarrollados usando la API secuencial de Keras.

Fuente: elaboración propia 

La estimación de la edad biológica a partir de la señal ECG constituye un avance significativo hacia la medicina 
preventiva personalizada, ya que permite identificar desviaciones entre la edad cronológica y el estado funcional del 
sistema cardiovascular. Este enfoque facilita la detección temprana de riesgos y la intervención clínica proactiva, a 
la vez que impulsa la transferencia de conocimiento desde el ámbito universitario hacia la sociedad. El desarrollo de 
herramientas accesibles y basadas en inteligencia artificial, como los clasificadores MLP de este estudio, promueve la 
aplicabilidad de la investigación científica en entornos clínicos reales. De esta forma, se contribuye a la democratiza-
ción de tecnologías diagnósticas avanzadas y al fortalecimiento de la salud pública desde una perspectiva preventiva 
y personalizada.

RESULTADOS-DISCUSIÓN

Se desarrollan modelos MLP basados en los dataframes confeccionados por cada rasgo individual (9) y por cada seg-
mento de señal (3), para un total de 27 dataframes. Además, se confeccionó dataframe conteniendo todos los valores 
de los rasgos de FD, en este caso se utiliza solo un segmento de señal (PQRST) debido a que no se registran cambios 
significativos en utilizar cualesquiera de los 3 segmentos de señal por separado.

Los valores de precisión obtenidos por cada uno de los 9 rasgos de manera individual, por cada uno de los 3 segmen-
tos de señal y por cada una de las 4 clases del atributo objetivo definidas se muestran en la Figura. 6. 

Fig 6: Valores de precisión de los modelos MLP desarrollados para cada rasgo de FD, aplicado sobre cada uno de los 
segmentos de señal y por cada clase Age.

Fuente: elaboración propia.

Como puede verse no se registran diferencias significativas en el uso de un rasgo en particular, por lo tanto, no se 
considera que ninguno de los modelos desarrollados a partir de los rasgos de FD individuales haya logrado captar los 
patrones de la señal ECG relacionados con la edad. Además, se puede observar que la utilización de cualquiera de 
los 3 segmentos de señal tampoco reporta diferencias en cuanto a la mejora del desempeño del modelo, por supuesto 
el uso de los segmentos de señal PR y RT, de menor longitud, optimizan el desarrollo desde el punto de vista de la 
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carga computacional. Así, puede decirse que no existe 
un segmento de señal, entre los tres definidos, que aporte 
información relevante sobre la edad al aplicarse cuales-
quiera de los rasgos de FD en estudio.

A continuación, se desarrolla un modelo MLP, siguiendo 
la misma arquitectura, basado en los valores de los 9 ras-
gos de FD combinados aplicados sobre el segmento de 
señal PQRST; en la Figura. 7 se muestran los valores de 
precisión obtenidos por el clasificador.

Fig 7: Valores de precisión de los modelos MLP desarro-
llados basado en los 9 rasgos de FD combinados, aplica-
dos sobre el segmento de señal PQRST y para cada una 
de las clases objetivos.

Fuente: elaboración propia.

Como puede verse se obtienen mejoras significativas 
en el desempeño del clasificador especialmente para el 
caso de la clase objetivo Age_class_3, que contiene 2 
clases de edades (con umbral de 50 años). Este resul-
tado obtenido del 75% de precisión es un indicador que 
permite comenzar a trabajar en la mejora del modelo del 
clasificador, ya que se considera que valores de precisión 
por encima del 70% garantizan que pudieran obtenerse 
mejores resultados trabajando en el modelo de datos. 

La capacidad de estimar la edad biológica a partir del 
análisis fractal de la señal ECG, incluso con una preci-
sión moderada como la obtenida en este estudio (75% 
para discriminar entre individuos mayores y menores de 
50 años), representa un avance significativo hacia la me-
dicina preventiva personalizada. En lugar de depender 
exclusivamente de la edad cronológica, este enfoque 
permite evaluar el estado funcional del sistema cardio-
vascular a través de un indicador cuantitativo y objetivo 
derivado de un examen rutinario y no invasivo. La identi-
ficación de un envejecimiento cardiovascular acelerado 
podría facilitar la detección temprana de riesgos subclíni-
cos, permitiendo intervenciones personalizadas en estilo 
de vida, farmacológicas o de seguimiento, antes de que 
se manifiesten patologías establecidas. Así, la integración 
de biomarcadores basados en la complejidad de la señal 
ECG, como los aquí explorados, sienta las bases para el 
desarrollo de herramientas clínicas de estratificación de 
riesgo que contribuyan a una cardiología más predictiva 
y preventiva.

CONCLUSIONES

Este estudio exploró el potencial de nueve rasgos de di-
mensión fractal (FD) aplicados a segmentos de la señal 
ECG de 12 derivaciones para estimar la edad biológica 
de individuos sanos. Los resultados principales indican 

que, mediante la combinación de estos rasgos y utili-
zando un clasificador MLP, es posible discriminar entre 
dos grupos de edad (con un umbral de 50 años) con una 
precisión del 75%. No se observaron diferencias signifi-
cativas al utilizar uno u otro de los segmentos de señal 
definidos (P-R, PQRST, R-T).

Más allá de la precisión técnica, el valor central de esta 
investigación radica en su potencial impacto social y su 
contribución a un paradigma de salud más anticipatorio 
y equitativo. La capacidad de inferir un indicador de en-
vejecimiento cardiovascular a partir de un electrocardio-
grama de rutina sienta las bases para el desarrollo de 
herramientas accesibles y de bajo costo que impulsen 
la medicina preventiva personalizada. En un contexto de 
poblaciones que envejecen y sistemas de salud bajo pre-
sión, contar con un biomarcador objetivo que señale un 
“envejecimiento cardíaco acelerado” permitiría identificar 
a individuos en riesgo subclínico, facilitando intervencio-
nes tempranas en estilo de vida, seguimientos personali-
zados y una gestión más eficiente de recursos sanitarios. 
Esto representa un paso tangible hacia la democratiza-
ción de la salud cardiovascular, acercando la evaluación 
de riesgo avanzada a ámbitos clínicos más diversos y a 
la atención primaria.

Para que este potencial se concrete en un beneficio real 
para la sociedad, es fundamental canalizar estos ha-
llazgos a través de una efectiva transferencia de cono-
cimiento desde la universidad. La investigación acadé-
mica, como la aquí presentada, constituye la semilla de 
la innovación. Su materialización requiere de una alianza 
estratégica entre la academia, el sector clínico y la indus-
tria tecnológica, que permita traducir los modelos de la-
boratorio en aplicaciones validadas, interfaces amigables 
y protocolos integrados en la práctica clínica diaria. La 
Universidad, como generadora de conocimiento, tiene 
el compromiso social no solo de investigar, sino también 
de transferir y co-crear soluciones que respondan a las 
necesidades de la población. Este trabajo, por tanto, no 
concluye en sus resultados numéricos, sino que se pro-
yecta como un punto de partida para un ciclo virtuoso de 
investigación, desarrollo, innovación y transferencia, cuyo 
fin último es mejorar la calidad de vida y la salud cardio-
vascular de las personas.
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