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ABSTRACT

In this paper, conditions are obtained for the coefficients of one class of operator-differential equations of the fourth order, 
which ensure the solvability of some boundary value problems correctly posed for these equations. Moreover, a connection 
is indicated between the solvability of boundary value problems and the exact value of the norm of operators of intermediate 
derivatives in some subspaces.

Keywords: Equations, solvability of boundary, mechanics, mathematical-physic.

RESUMEN

En este trabajo, se obtienen condiciones para los coeficientes de una clase de ecuaciones operador-diferenciales del cuarto 
orden, que aseguran la solvencia de algunos problemas de valor límite correctamente planteados para estas ecuaciones. 
Además, se indica una conexión entre la solvabilidad de los problemas de valor límite y el valor exacto de la norma de ope-
radores de derivados intermedios en algunos subespacios.
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INTRODUCTION 

Many problems in mechanics, mathematical physics, and the theory of partial differential equations lead to the study of 
the solvability of boundary value problems for operator-differential equations in various spaces (Kreyn & Laptev, 1966; 
Kreyn, 1967; Yurchuk, 1974; Gasimov & Mirzoev, 1992; Mirzoev & Humbataliev, 2010; Humbataliev, 2014ab, 2020, 
2021).

Note that some problems in the theory of elasticity in a strip (Papkovich, 1940, 1941; Ustinov & Yudovich, 1973), pro-
blems in the theory of vibrations of mechanical systems (Kostyuchenko & Orazov, 1981), and vibrations of an elastic 
cylinder (Lyons & Magenes, 1971) lead to the study of the solvability of some boundary value problems for operator-di-
fferential equations and the construction of the spectral theory of quadratic beams and high-order beams. For example, 
the stress-strain state of a slab leads to solving problems of the theory of elasticity in a strip. In the works of Papkovich 
(1940, 1941; Ustinov & Yudovich (1973); and Orazov, 1979) the boundary value problem of elasticity theory in a strip 
reduces the solvability of various boundary value problems for a second-order equation and obtained a solution in the 
form of the limits of decreasing elementary solutions of the homogeneous equation, which is closely related to the dou-
ble completeness of systems of eigenvectors and associated vectors.

Note that finding the exact values of the norms or their upper bounds for the operators of intermediate derivatives are 
of independent mathematical interest and have numerous applications in various fields of mathematical analysis (Lyons 
& Magenes, 1971; Gorbachuk & Gorbachuk, 1984; Mirzoev, 2003)1984; Lyons & Magenes, 1971; Mirzoev, 2003, for 
example, in approximation theory (Stechkin, 1967; Taikov, 1968).

In order to continue let’s define some auxiliary facts and the problem statement. Let H be a separable Hilbert space, 
and A, a positive definite self-adjoint operator with domain D(A). Let denote by  a scale Hilbert space generated by the 
operator A, i.e., Hy = D(Ay), (x,y)y, x,y ∈ Hy, y ≥ 0, and when y = 0 then H0 = H. We denote by L2 ((0,1); H) the Hilbert space 
of vector functions f(t), defined in (0,1) almost everywhere with values in H, such as equation 1 is fulfilled. 

(1)

Further, define a Hilbert space (Lyons & Magenes, 1971) as equation 2 with a norm given in equation 3. Here and in 
what follows, derivatives are understood in the sense of the theory of distributions.

(2)

(3)

In addition, let’s introduce subspaces space shown in equation 4 where  is a real number. Similarly let’s define space 
L2(R;H) and  at R=(-∞,∞). We denote D((0,1); H4)  as the set of infinitely differentiable functions with values in 
H4. As is known (Lyons & Magenes, 1971), the linear space D((0,1); H4) is dense everywhere in space ((0,1); H4). 
Then equation 5 follows from the trace theorem being D((0,1); H4)  dense everywhere in space ((0,1); H;a) .

(4)

(5)

In a separable Hilbert space, consider the boundary value problem of equations 6 and 7, where A = A ^ * >cE(c>0), 
but Aj  is a linear operator in space. 
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(6)

(7)

Definition 1: If for f(t) ∈ L2((0,1);H) there is a vector – function u(t) ∈ ((0,1); H), which satisfies equation (6) in almost 
everywhere, then it will be called a regular solution to equation (6).

Definition 2: If for any f(t) ∈ L2((0,1);H) there is a regular solution to equation (6) u(t) ∈ ((0,1); H) which satisfies the 
boundary condition (7) in the sense of the convergence (equation 8) and the inequality (equation 9) then problem (6), 
(7) is called regularly solvable.

(8)

 
(9)

Then, the objective of this paper is to find sufficient conditions on the coefficients of equation (6), which ensure the 
regular solvability of problem (6), (7). These conditions are expressed only by the coefficients of equation (6). Note that 
for equation (6) various boundary value problems in the semiaxis have been investigated by many authors (Kreyn & 
Laptev, 1966; Ustinov & Yudovich, 1973; Yurchuk, 1974; Gasimov & Mirzoev, 1992; Humbataliev, 2014ab, 2020, 2021).

DEVELOPMENT

In a finite domain, the existence and uniqueness of generalized solutions of some boundary value problems were stu-
died by Orazov (1979); and Mirzoev & Humbataliev (2010), in a more general form. In Dubinsky (1973), the existence of 
periodic solutions to the boundary value problem was investigated, when the main part has the form of equation 10 but 
the coefficient expressed in equation 11 were complex numbers, and A-self-adjoint operators had a discrete spectrum. 
Note that for  the boundary conditions are periodic, and for  boundary conditions are antiperiodic. Also when n=1 the 
periodic problem is covered in the book by Kreyn (1967)”author”:[{“family”:”Kreyn”,”given”:”S.G.”}],”issued”:{“date-
parts”:[[“1967”]]}},”suppress-author”:true}],”schema”:”https://github.com/citation-style-language/schema/raw/master/
csl-citation.json”} .

(10)

(11)

First, let’s look at the simple problem of equations 12 and 13. Then, we will prove the lemma 1, which we will need in 
what follows.

(12)
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(13)

Lemma 1: At u(t) ∈ ((0,1); H;a) for any polynomial in the form of equation 14 where αk∈R  the inequality of equation 
15 holds, where b0= a0

2, b1=a1
2-2a2a0, b2=a1

2-2a3a1+2a4a0, b3=a3
2-2a2a4, b4=a4

2. 

(14)

(15)

Proof: Obviously, it suffices to prove (15) for vector functions u(t) ∈ D((0,1);H;a). When u(t) ∈ D((0,1);H;a) equation 16 
holds.

(16)

When k=s+2v,v=1,2 integrating by parts, we obtain equation 17. 

(17)

As u(t) ∈ D((0,1);H;a), then we get equation 18. Similarly, we find equation 19 for s=v+1.

(18)
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(19)

In this way we can get equation 20 and the lemma 1 is proved.

(20)

Corollary 1: At  the equality in equation 21 holds.

(21)

Indeed, from the previous expression it’s clear that a0 = 1, a4 = 1, a2 = -2, a1 = a1 = 0. Therefore, it follows from Lemma 
1 that b0 = 1, b4 = 1, b1 = 4, b2 = 6, b3 = 4. Then, the following theorem takes place.

(22)

(23)

It’s obvious the relation of equation 24 where  is the Fourier transform of the vector function f1(t), which is a conti-
nuation of the function f(t) from interval (0,1) on R as a null function. Then equation 25 holds.
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(24)

(25)

Since at ξ∈R we get the relation of equation 26 arriving at equation 27 and similarly .

(26)

(27)

We denote the narrowing  on (0,1) through . Then it is obvious that  and we get the equation 28.

(28)

Now let´s look for regular solutions problem (12), (13) in the form of equation 29 where c0,  c1, c2, c3 are unknown vectors 
from space H7/2 (Yurchuk, 1974) and belong to the definition. To define vectors c0,  c1, c2, c3 we get the following system 
of equations (equation 30).

(29)

(30)

This system can also be represented in operator form  where  = c0,  c1, c2, c3,   and . It’s ob-
vious that . Let us show that the operator matrix  reversible in space H7/2.

Let  and denote W(λ), where in the matrix W(A) operator A replaced through . Obviously, for λ→∞ the 
relation of equation 31 is fulfilled.

(31)

Thus, for λ>Λ0, where Λ0 is quite a large number, det W(λ) is reversible: |det W-1(λ)| ≤ const. Let λ ∈ [μ0, Λ0], then for ∀ λ 
∈ [μ0, Λ0] W(λ)  is reversible and |det W-1(λ)| ≤ const. If for some ∀ λ ∈ [μ0, Λ0] W(λ0)  is not reversible, then det W(λ) = 0, 
i.e., ,  has a nonzero solution. This means that the boundary value problem of equation 32 has a 
nonzero solution, and when  H=C, A=λ0, which contradicts corollary 1. 

 

(32)

Thus, for any λ∈[μ0, Λ0] exists W-1(λ0). On the other hand W-1(λ) is a continuous function, then ‖W-1(λ)‖≤const in [μ0, Λ0]. 
But with  λ→∞ ‖W-1(λ)‖≤const. Thus, the inequality ‖W-1(λ)‖≤const is also carried out at λ∈σ(A)∈[μ0,∞). Then from the 
spectral decomposition A follows that W(A) is reversible in H7/2 and ‖W-1(λ)‖≤const. Therefore, we can find c0, c1, c2 and 
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c3∈H7/2. Thus, in u(t) there is a solution P0u=f. On the other hand, equation 33 follows from Lemma 1 of the theorem on 
intermediate derivatives.

(33)

Then the theorem on the inverse operator implies the assertion of Theorem 1. Thus, the expressions in equation 34 are 
equivalent in space .

(34)

Then it follows from the theorem on intermediate derivatives that the following numbers of equation 35 are finite.

(35)

On the solvability of boundary value problems (6), (7)

Taking the above into account the theorem 2 holds.

(36)

(37)

The relation in equation 38 is fulfilled considering that α<1, and we get that ν(t) = (E+ P1P0
-1) f(t), but u(t)=P0  (E+ P1 P0

-1)
f(t).

(38)

Therefore, equation 39 follows and the theorem is proved.
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(39)

Thus, to find the condition for regular solvability, we must find upper bounds for the norms . For this purpose, 
consider the operator Pj (λ,β,A) = (-λ2 + A2)4 - (-1)j  βλ2j A8-2j  where β is a valid parameter.

Lemma 2: Let β ∈ , where  is expressed in the form of equation 40. Then the operator Pj (λ,β,A) is reversible 
on the imaginary axis and is represented in the form of equation 41 where the beam coefficient may be expressed as 
equation 42 and every αj,l (β)>0 satisfy the relation as can be seen next. 

(40)

(41)

(42)

a) At j=1, equation 43.

(43)

b) At  , equation 44.

(44)

c) At  , equation 45.

(45)

Proof: Let σ∈σ(A), λ=iξ, ξ∈R. Then it is obvious that for the numerical polynomials of equation 46 i.e., at σ∈σ(A) poly-
nomial  are on the imaginary axis.

(46)
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Then the polynomial Pj (iξ;β;σ) has four roots from the left half-plane  and four 
roots from the left half-plane . Hence:

(47)

 Given that

(48)

We get 

(49)

Further, using the spectral decomposition of the operator  we obtain relation (41). Obviously every αl,4(β)=1. But, 
. Since the coefficients of the polynomial Pj (λ;β;σ) are valid then roots ωl,j (β) are complex conjugate 

or negative numbers. Therefore α0,j (β)>0. On the other hand, it follows from (48) and (49) that , i.,e., α0,j (β) = 0. 
It follows from (49) that the remaining numbers . When comparing degrees  equality (49) yields the validity of equality 
(43), (44), and (45) and the lemma is proved. 

Corollary 2: With all  the inequality of equation 50 holds.

(50)

Proof: As equation 51 is fulfilled then applying relations (43) - (45) and using Corollary 1, we obtain the relation in equa-
tion 52.

(51)

(52)

Theorem 3: With all  the inequality of equation 53 holds. Going to the limit  we get the relation 
in equation 54 and the theorem is proved. 

 
(53)

 
(54)

Then, from Theorems 2 and 3 we obtain the following main theorem
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Theorem 4: Let A=A*≥cE (c>0), and the opera-
tors  bounded in , if the inequality 

 holds, then problem (6), (7) is regularly 
solvable.

CONCLUSIONS

The theory of partial differential equations lead to the stu-
dy of the solvability of boundary value problems for ope-
rator-differential equations in various spaces. In this work, 
applying logic, sufficient conditions were found for the 
solvability of a special type of boundary value problem, 
which were synthesized in theorem 4. This has special re-
levance for solving problems in different fields, especially 
mathematical physics.
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