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ABSTRACT

The study of the demand for medications is one of the stages that should be taken into account in planning these inventories. 
Such study helps managers and governmental organizations in the decision-making process. The scope of this paper is to 
put forth a method of forecasting the demand for medications by a pharmaceutical organization. The study analyzes histo-
rical demand data in combination with morbidity data. A procedure is designed, based on the available scientific literature, 
and applied to one of the 487 medications studied. The forecast is adjusted according to the changes of morbidity; the data 
was provided by pharmaceutical authorities. The results suggest that the ARIMA (0,1,1)x(0,1,1)12 is the most adequate to 
forecast the demand of this product. Future researches may test the procedure designed in a wider variety of medications. 
This paper defines stages for the medication inventory forecast, by offering guidelines of the different activities that inventory 
planners should perform.

Keywords: Demand for medications, demand forecast, ARIMA model.

RESUMEN

El estudio de la demanda de los medicamentos es una de las etapas que se deben cumplimentar en el proceso de plani-
ficación de estos bienes. Tal estudio ayuda a los directivos y a las organizaciones gubernamentales en el proceso de toma 
de decisiones. El objetivo de este artículo es pronosticar la demanda del inventario de medicamentos de una institución far-
macéutica, al combinar los datos históricos de demanda y los datos de morbilidad asociados. Se diseña un procedimiento 
basado en la literatura y se aplica a uno de los 487 fármacos estudiados. Se ajusta el pronóstico a los cambios que experi-
menta la morbilidad a partir de los datos que aportan las autoridades farmacéuticas. Los resultados sugieren que el modelo 
más adecuado para el pronóstico de demanda del artículo seleccionado es el ARIMA (0,1,1)x(0,1,1)12. Las investigaciones 
futuras deben aplicar el procedimiento a una muestra superior. En el presente trabajo se definen fases para el pronóstico de 
la demanda de los fármacos, al alinear las diversas actividades que los hacedores de la planificación deben desempeñar. 

Palabras clave: Demanda de los medicamentos, pronóstico de demanda, modelo ARIMA. 
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INTRODUCTION

The pharmaceutical industry is one of the economic and 
health strategic sectors of the world nowadays. This in-
dustry has the mission of ensuring better living standards 
and contribute to increase the life expectancy of those 
who suffer illnesses and of the population in general. It is 
a stepping stone for those who fight for preventing, diag-
nosing and treating diseases every day. The decisive role 
of this sector has been reinforced with the appearance, 
transmission or infection of the new SARS-CoV-2 in human 
beings, which causes the COVID-19. Due to that, this sec-
tor, as well as the biotechnological one, is in charge of the 
development of a vaccine to control the infection; it plays 
a key role in reducing the number deaths and producing 
diverse medications which are necessary to attack the 
symptoms of the pandemic, thus avoiding deterioration of 
the patients’ health and the complications that appear in 
patients who suffer from other pathologies.

One of the methods that shed light on the implementa-
tion of the medications inventory planning process is de-
mand forecasting, which is an integral part of business 
process management. Despite the complexity and exe-
cution of forecasting processes across different busines-
ses, the intended purpose stays the same: obtaining a 
fairly accurate estimation of future demand for a product 
or service given historical data and the current state of 
the environment (e.g., political, social, economic) to plan 
and organize businesses accordingly. Forecasting accu-
racy is still a big challenge in the pharmaceutical industry 
(Merkuryeva, et al., 2019).

Accordingly, Access to medications is essential for mate-
rializing access to health as a fundamental human right. 
As such, it is included in the United Nations Sustainable 
Development Goals, and is recognized as key-element 
for scaling-up access to health services towards universal 
health coverage. Pharmaceutical services are not restric-
ted to the logistical component of medications availability. 
They also include management and quality of services, 
and promotion of adequate use of medications. Even 
though, the availability of medications is an extremely im-
portant dimension for the assurance of access to these 
products (Mota Soares, et al., 2019).

In today’s organizations, which are subject to abrupt and 
enormous changes that affect even the most established 
of structures and where all requirements of business sec-
tor need accurate and practical reading into future, the 
forecasts are becoming very crucial since they are the 
sign of survival and the language of business in the world. 
A forecast is a science of estimating the future level of 
some variables. The variable is most often demand, but 

it can also be something else, such as supply or price. 
Forecasting is the operation of making assumption about 
the future values of studied variables (Fattah, et al., 2018).

A variety of forecasting methods have been developed 
based on two well-known approaches to forecasting: 
qualitative and quantitative. Correspondingly, qualitative 
methods such as executive opinions, Delphi technique, 
sales force polling and customer services generate fo-
recasts based on judgements or opinions, while quanti-
tative techniques may be grouped under historical data 
forecasts, e.g., naive method, trend analysis, time series 
analysis, Holt’s and Winter’s models, or under the so ca-
lled associative forecasts which identify causal relations-
hips between variables using simple, multiple or symbolic 
regression. In addition, mixed or combined models enable 
integration of both approaches. In the pharmaceutical in-
dustry, time-series models are used most often (52%) and 
causal models account for 24%, while judgmental – for 
19% and remaining 5% represent mixed or combined mo-
dels (Merkuryeva, et al., 2019).

During the last decade, few mathematical methods have 
been presented to forecast the medications demand or 
the morbidity of a specific illness, which could also be 
useful in such task. In this paper, the search of bibliogra-
phic sources was done in databases such as: Scopus, 
Scielo, PubMed, Inbiomed and Virtual Health Library and 
Web of science. Some of the articles consulted are those 
of Ren, et al. (2013), who presented a combined model, 
ARIMA-BPNN (back propagation neural network) to fore-
cast the incidence of hepatitis E in Shanghai. This com-
bination of both models was introduced in order to over-
come the main limitation of the ARIMA, that is to say its 
pre-assumed linearity. The goodness-of-fit of the ARIMA 
model proposed by the authors were: the stationary  the 
root mean square error (RMSE), the Bayesian information 
criterion (BIC), the Ljung-Box Q statistics. It was also used 
the mean error rate (MER) to explain the comparison of 
predicted and actual values between single ARIMA and 
ARIMA-BPNN. Merkuryeva, et al., (2019), who have pro-
posed an experimental analysis of three forecasting sce-
narios, concluding that the symbolic regression-based 
forecasting model provides the best fitting curve to his-
tory demand data and the lower error estimates across 
all scenarios, as well as the ability to more accurately pre-
dict demand peak sales in their study. In this case, the 
Pearson  coefficient is used to measure fitness. Roosa, 
et al. (2020), who have developed three phenomenologi-
cal models used previously to derive short-term forecasts 
in other epidemics. These are: The generalized logistic 
growth model (GLM), the Richard’s model and a sub-
epidemic wave model. The criteria used by these authors 
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to assess the visual fit of the models were the residuals 
and the mean squared error (MSE). Linnér, et al. (2020), 
compared the predicted pharmaceutical expenditure with 
actual expenditure, including medications used in hos-
pitals and dispensed prescription medications. A linear 
regression model was used and fitted to a time series of 
drug utilization data. Yonar, et al., (2020), presented the 
forecasting models used by Germany, United Kingdom, 
France, Italy, Russian, Canada, Japan, and Turkey to 
estimate the number of COVID 19 epidemic cases bet-
ween 1/22/2020 and 3/22/2020. The models approached 
by these authors are: regression models (cubic models), 
which resulted to be the best for all countries and the Box-
Jenkins and exponential smoothing models, concluding 
that could be used because of having a Mean Absolute 
Percentage Error (MAPE) less than 10%. 

This paper presents a procedure to forecast the demand 
of one of the 487 medications studied in a pharmaceu-
tical organization, as well as evaluating the results and 
the goodness-of-fit of the model selected, presenting the 
forecast done for the period of time of 144 months, from 
January 1st, 2009 to December 31st, 2020. The rest of this 
paper is organized as follows. In section 2, the materials 
and methods are presented. In section 3, the results and 
discussion are shown. The conclusions are also presen-
ted after section 2. 

MATERIALS AND METHODS

The data used in this paper contain the number of blisters 
sold of the item selected during 144 months, from January 
1st, 2009 to December 31st, 2020. The item is labeled as 
AZ123. Data is modeled to forecast its needs for each of 
the months of 2021. The forecasting is compared with the 
morbidity data obtained from pharmaceutical authorities 
and then adjusted if necessary. Different forecasting mo-
dels were tentatively tested, then the best goodness-of-
fit model, ARIMA (0,1,1)x(0,1,1)12, is selected. Historical 
data is processed by the IBM SPSS Statistics for Windows, 
Version 23.0. The series was divided in two parts, data 
from January 1st, 2009 to data from December 31st, 2019 
were used to perform the time series model and data from 
January 1st, 2020 to data from December 31st, 2020 were 
used to check the adequacy of the model. The quantita-
tive approach was used, as well as the problem-solving 
scientific method.

The inventory selected is a drug stock, mainly because 
these articles have a direct impact on the living standards 
of society, and due to the fact that its significance has 
been more tangible these days, in which the occurrence 
of the COVID-19 pandemic, caused by the SARS-CoV-2, 
has reinforced the need of the development of a strong 

planning system for this kind of inventory. These facts 
have been exposed by Bond & Newton (2020), who have 
mentioned that the ocurrence of drug shortages for the 
treatement, diagnosis and prevention of COVID-19 and 
of other diseases have been evident, in some cases be-
cause the pharmaceuticals applied for the treatment of 
those other illnesses and their symptoms have been used 
for the treatment of the symptoms and complications 
which the patients suffering from COVID-19 have needed. 
Otherwise, the forecasting models which are theoretically 
explained can be applied in other kinds of inventory too, 
by taking notice of their historical behaviour, trends, sea-
sonality and other aspects which be taken account of in 
this type of study.

Among the models which are mostly used to forecast a 
demand meet the exponential smoothing models: sim-
ple smoothing, Brown/Holt linear exponential smoothing, 
weighted moving averages, Winters´ additive, Winters´ 
multiplicative and simple seasonal. Some other models 
and methods have also added to this task, such as the 
neuronal networks and the autoregressive integrated 
moving average (ARIMA) models, which have been also 
used to forecast the number of COVID 19 epidemic cases 
in many countries. This fact is evidenced by Yonar, et al., 
(2020).

The procedure designed consists of three main stages: 
the first one is the collection and organizing of data; the 
second one, the selection of the model, the third one is 
related to the adjusting of the forecasting and the fourth 
one is the forecasting accuracy. 

1.	 First stage: data collection and organization 

Data are collected from the historical records of the phar-
maceutical organization where the study took place. Data 
collected are adjusted from considering the shortages oc-
curred during the period selected and they are obtained 
from the records enable for this purpose. Data are entered 
in an Excel spreadsheet and organized according to the 
demand occurred in each of the 144 months.

2.	 Second stage: selection of the forecasting model

The first step in analyzing a time series is the graphical 
representation, through the sequence plot and the sim-
ple and partial autocorrelation functions, of the variable 
over time. This representation shows the possible trend 
of the series, as well as the existence or not of seasonal 
and stationary components. In the same way, outliers are 
detected, which should be adjusted to improve the series 
and thus obtain a more reliable model. 
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The selection of an ARIMA forecasting implies the deve-
lopment of four phases or steps, according to the Box-
Jenkins methodology, as shown in figure 1.

Figure 1. Flowchart of the Box-Jenkins methodology

Source: Tshepiso Tsoku, et al., (2017).

Phase 1: Tentative model identification

The first phase is addressed to tentatively identify the mo-
del by running a plot of data, determining the stationarity 
condition of the original series (Y’´=(Y1,Y2,Y3,…,Yn )

In this phase, it is determined if the data of the series are 
stationary, since the ARIMA models are designed for this 
type of data. The stationarity is determined by analyzing 
the sequence plot, the mean-standard deviation plot and 
the autocorrelation function (ACF) and the partial autoco-
rrelation (PACF) are also built and analyzed. If differencing 
is necessary, the series is transformed by applying loga-
rithms, in the way expressed in equation 1.

 (1)

The Box-Jenkins methodology is widely used for time se-
ries analysis and includes ARIMA models applied to the 
series that are non-stationary but are made stationary with 

the operation of differencing the series. The base of Box-
Jenkins methodology is to choose an ARIMA model that 
includes the most suitable but limited parameter among 
the various model options, depending on the nature of the 
considering data (Yonar, et al., 2020).

ARIMA (p, d, q) models are obtained by taking the di-
fference of the series from d degree and adding it to an 
ARMA (p, q) model for the stabilizing the process. In the 
ARIMA (p, d, q) models, p is the degree of the autoregres-
sive (AR) model, q is the degree of the moving average 
(MA) model and d stands how many differences are requi-
red to make the series stationary. ARIMA model becomes 
AR (p), MA(q) or ARMA (p, q) if the time series is statio-
nary (Yonar, et al., 2020).

The mathematical expression on an ARMA (p, q) model is 
as shown in equation 2:

 (2)

The first difference of the non-stationary Yt is calculated by 
using the mathematical expression 3:

 (3)

If the ´
tY is not still stationary, the difference taking process 

is repeated for the d times until being stationary (Yonar, et 
al., 2020). The expression which represents this process 
is shown in the equation 4.

 (4)

The expression of ARIMA (p, d, q) is as shown in equation 
5.

 (5)

Where,

∅ρ: the parameter values for autoregressive operator,

αq: the error term coefficient,

θq: the parameter values for moving average operator,

Yt: the time series of the original series differenced at the 
degree d.

The Seasonal Auto-Regressive Integrated Moving 
Average (SARIMA) models are more adequate for long-
term than for short-term predictions with seasonal pat-
terns. However, these latter are analyzed on a seasonal 
series, and require at least 50 data. The SARIMA model 
is useful in situations in which the data of seasonal series 
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show periodic seasonality fluctuations that repeat them-
selves with almost the same intensity every year (Rojas, 
et al., 2019).

A SARIMA seasonal model with s observations per period, 
denoted by (p, d, q) X (P, D, Q)s is given by the expression 
6.

 (Rojas, et al., 2019) (6)

Where,

B: is the delay operator 

Yt: is the time series of variable Y in time t,

ΦB: is the autoregressive polynomial (AR) of the seasonal 
part P order. That is,

 (7)

And the autoregressive polynomial (AR) of the non-seaso-
nal part, of the order p, is symbolized with  and is develo-
ped as follows, in equation 8.

 (8)

Whereas  is the polynomial of moving averages (MA) of 
the seasonal part Q order, where:

 (9)

And  is the polynomial of moving averages (MA) of the 
non-seasonal part of the q order, 

where: 

 (10)

The number of differences needed to make stationary the 
series in the non-seasonal part, is symbolized as d and 
calculated as shown in the expression 11.

 (11)

whereas D is the number of seasonal differences and it is 
represented as shown in expression 12.

 (12)

αt : refers to the terms of random error, also called white 
noise, which are assumed to be random variables, inde-
pendently distributed in identical manner, sampled from a 
distribution with a mean of zero and a variance expressed 
as: αt ≈N(0,δ2).

Besides looking at the graphical presentation of the time 
series values over time to determine its stationary or 
non-stationary condition, the sample ACF also gives vis-
ibility to the data. Non-stationary data displaying trend 

behavior can be transformed through regular differencing 
(Tshepiso Tsoku, et al., 2017). 

Phase 2: Model estimation

The model estimation phase involves estimation of the pa-
rameters of the models identified in the first phase. The 
least squares approach is employed in model estimation 
(Tshepiso Tsoku, et al., 2017).

Once the model has been tentatively identified, its para-
meters are estimated. If d differences have been taken 
in the series, d observations will be lost, leaving T-d data 
available for estimation. In this process the following hy-
potheses must be verified:

Hypothesis 1:

H0: εt has a white noise structure and follows a Normal 
distribution of mean 0 and variance 

Hypothesis 2: 

H0: the autoregressive part (AR) is stationary.

Hypothesis 3: 

H0: the seasonal part (MA) IS invertible.

Phase 3: Diagnostic checking

Diagnostic checking is the third phase, and in the Box-
Jenkins methodology, essentially involves the statistical 
properties of the error terms (normality assumption, weak 
white noise assumption) as well as common testing pro-
cedures on the estimates. εt is expected to follow a white 
noise process. Graphical procedure and formal testing 
procedure can be used to test adequacy of the model. In 
the graphical procedure, a plot of the residuals is exami-
ned to check for outliers (Tshepiso Tsoku, et al., 2017). To 
check the overall acceptability of the overall model, the 
Ljung-Box test can be used as follows:

H0: the model is adequate versus H1: the model is 
inadequate.

The test statistics Q* is calculated by using the expression 
13.

 (13)

Where,

n1=n-d,

n: is the number of observations,

d: is the degree of non-seasonal differencing used to 
transform the original time series values into stationary,

 is the square of the autocorrelation of the residuals 
at lag l.
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If the p-value is greater than significant level α or equiva-
lently Q* is less than chi-square distribution, the null hy-
pothesis cannot be rejected, concluding that the model 
is adequate. If a model is rejected at this stage; the mod-
el-building cycle has to be repeated (Tshepiso Tsoku, et 
al., 2017).

Phase 4: forecasting

Forecasting is the final and most important stage of the 
Box-Jenkins process. There are two broad 

types of forecasts: one step ahead forecasts are genera-
ted for the next observation only when multi-step ahead 
forecasts are generated for 1,2, 3...,s steps ahead. Many 
researchers suggest that Box-Jenkins’ ARIMA is the most 
accurate forecasting model. ARIMA wins over other mo-
dels, Holt’s forecast model and a combination of Box-
Jenkins and Holt’s in regression, by providing lowest 
mean MAPE. There are many simple measures of predic-
tion accuracy, for instance the mean squared error (MSE), 
mean absolute error (MAE) and mean squared deviation 
(MSD) (Tshepiso Tsoku, et al., 2017).

The MAPE is calculated by using the expression 14.

 (14)

This test statistic can be used to compare the accuracy of 
forecasts based on two entirely different series. The level 
of accuracy for the MAPE test is divided into four stages. 
Each level of accuracy gives the percentage of the accu-
racy of a predicted value compared to the original time 
series value (Tshepiso Tsoku, et al., 2017).

The table 1 shows the level of accuracy for MAPE test.

Table 1. Level of accuracy for MAPE test.

MAPE value Level of accuracy

 Very accurate
Accurate

Medium

Less accurate

Source: Tshepiso Tsoke, et al., (2017).

3- Third stage: adjusting of the forecasting

In this stage the forecasting obtained is adjusted to the 
morbidity changes that could be recorded by the pharma-
ceutical authorities during the planning process. So that, 
the final forecasting reflects the most accurate behaviour 
of the variable studied for the next period. 

4- Fourth stage: forecasting accuracy 

The forecasting accuracy refers to the further actions 
which should be carried out in the future to check up on 
the real behavior of the demand in the next period for 
which the forecasting was performed. The accuracy of the 
model is measured as shown in equation 15.

 (15)

Here, 

FAft denotes the forecasting accuracy of the model for the 
item (f) in a period (t). 

i: represents a single period, e.g. a week, a month and a 
year.

Afi: denotes de actual demand behaviour for the item (f) in 
the period (i).

Ffi: stands for the demand forecasting of the item (f) in the 
period (i).

RESULTS AND DISCUSSION

  This section expounds the results obtained in every sta-
ge of the research process.

First stage: data collection and organization

Historical data of demand of the item labeled as AZ123 
is collected from the commercial records of the pharma-
ceutical organization. Then, they are entered in an Excel 
spreadsheet. The quantities of blisters sold are organized 
by months, according to the moment in which the sale 
occurred. Once ordered, historical data are adjusted, for 
the first time, by considering the unrecorded demand, due 
to shortages in the supply chain. This information is obtai-
ned from the technical department of the pharmaceutical 
organization. Once the adjustments have been made, the 
data is exported to the statistical software SPSS, version 
23.0.

Second stage: selection of the forecasting model

The selection of the forecasting model is carried out 
through the phases of the Box-Jenkins methodology, 
which are developed below. 

Phase 1 and 2: Tentative model identification and model 
estimation

First, it is checked whether the series is stationary or not. 
So the sequence plot is built as shown in figure 2. 
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Figure 2. Original data sequence plot.

As it can be observed, the series shows various peaks, 
some of which appear to be equally spaced and some 
others do not. The peaks equally spaced suggest the pre-
sence of a periodic component to the time series. This 
seasonal pattern should be associated to the periods of 
time in which the presence of some diseases and their 
symptoms are treated with the pharmaceutical studied. It 
can also be noticed that there are some points between 
June, 2014 and December, 2014 which indicates that 
some data have significant deviations from the neighbo-
ring data points. It is also evident that the distance bet-
ween peaks, in some cases, is not regular, which is indi-
cative of an unsteady variance and an inconstant mean.

The correlograms of the original series are also built (see 
figures 3 and 4), which allows to know about whether the 
series is stationary and tentatively determine the possible 
model to be applied.

Lag Number
3533312927252321191715131197531

A
C

F

1,0

0,5

0,0

-0,5

-1,0
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Confidence 
Limit
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Limit
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Figure 3. Autocorrelation of the series.

When observing the figure 3, it could be presumably as-
sumed that the series follows an annual seasonality, due 
to significant peaks at the lags of 12, 24 and 36, and it is 
also noticeable that this function does not dwindles, so it 
could be assumed that it is not stationary.

Lag Number
3533312927252321191715131197531

P
ar

tia
l A

C
F

1,0

0,5

0,0

-0,5

-1,0
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Upper 
Confidence 
Limit

Coefficient

Figure 4. Partial autocorrelation of the series.

When analyzing the partial autocorrelations in figure 4, it is 
evident that such significance only appears at the lag of 24, 
which makes unsure the possibility of the abovementioned 
seasonality. 

Taking into account the no equally spaced peaks, the dis-
tance differences between some of these spikes and the 
doubt about seasonality; firstly, a mean and a variance 
analysis is carried out by applying a report in columns, 
in order to verify the possible unsteady behaviour of the 
series variance and the inconstant mean; whose results, 
shown in the table 2, confirm that data have different 
means and variances for each of the 12 years taken into 
account. Due to this fact, a natural logarithmic transforma-
tion is applied to the series, as well as one difference in 
order to make the series steady in variance and constant 
in mean, that is to say to make the series stationary in both 
parameters. 

Table 2. Report in columns.

Year Mean Variance

2009 1228 10093

2010 1235 17664

2011 1294 21281

2012 1316 15536

2013 1392 9179

2014 1433 7879

2015 1314 9554

2016 1184 6590

2017 1310 4327

2018 1296 13972

2019 1190 6055

2020 1245 8573

In order to determine the possible seasonal pattern 
of the series, it is necessary to determine whether the 
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abovementioned differencing should be carried out to the 
regular part or the seasonal part of it. This fact is verified 
through the sequence plot and correlograms of the series 
by applying a logarithmic transformation and differencing 
the regular part and by applying a logarithmic transfor-
mation and differencing the seasonal part. This analysis 
is shown below. 

The autocorrelation function (ACF) and the partial autoco-
rrelation (PACF) of the series logarithmically transformed 
and with a differentiation of order 1 is presented in figures 
5 and 6 respectively. The autocorrelation function (ACF) 
shows significant peaks at lags of 12, 24 and 36, this sig-
nificance is present at lags of 12 and 24 of the partial au-
tocorrelation function too, but a dwindling is not observed 
in any of the two, so it is obvious the lack of stationarity.
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Figure 5. Simple autocorrelation function.

Due to the results mentioned above, the sequence plot 
and correlograms (see figures 7, 8 and 9 respectively) for 
the series logarithmically transformed and differentiated in 
its seasonal and non-seasonal parts are built.
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Figure 6. Partial autocorrelation function.

As it can be observed in the figure 7, the sequence plot 
shows how all observations move around the zero value, 
so it can be concluded that the series is stationary.

When analyzing the simple and partial autocorrelogram 
functions in figures 8 and 9 respectively, it is evident that 
the they fulfill the conditions for the presence of stationarity. 
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Figure 7. Sequence plot.

As it can be noticed, the coefficients of both autocorrela-
tion functions have nonzero coefficients in multiples (12, 
24, 36) of the seasonal period. Moreover, the autocorrela-
tion function (ACF) takes a sinusoidal shape and decays 
quickly, which completes its cycle by spinning on the axis 
and for a quantity of lags equals to the seasonal period. 
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Figure 8. Simple autocorrelation function.

According to what it has been mentioned previously, the 
regular part of the series is integrated by zero (o) order = 
I(0) and the seasonal part is integrated by a first order = 
I(1). 

So, it is necessary to identify the autoregressive part of 
the series, for which it is analyzed the two correlograms, 
numbered as 7 and 8; observing that their coefficients do 
not make abruptly null, so their structure adjust to the fo-
llowing models: ARIMA (1,0,1)x(1,1,1)12, or ARIMA (1,0,1)
x(0,1,1)12, or ARIMA (0,1,1)x(0,1,1)12. Both models are tes-
ted according to the assumptions they have to fulfill, and 
the ARIMA (0,1,1)x(0,1,1)12 is selected. The rest of the mo-
dels identified are discarded because of the presence of 
non-significant parameters. 
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Figure 9. Partial autocorrelation function.

Phase 3: Diagnostic checking

As it can be noticed in the figure 10, the model fits well the 
data; so, it shows a good agreement between observed 
values and fit values, indicating that the model has a sa-
tisfactory predictive ability. It also does a good job by cap-
turing the seasonality. The dataset covers a period of 12 
years and includes 12 seasonal peaks and those values 
predicted match up well with the 12 annual peaks in ob-
served values. The next step would be to check whether 
the model fulfill the statistical properties of the error terms 
(normality assumption, white noise assumption) and the 
other statistics which should be checked.
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Figure 10. Model goodness-of-fit.

After checking that the model is fit to the data, the analysis 
of the residuals is necessary, in order to validate the mo-
del. One test that should be taken into account is to check 
whether the residuals are white noise; if they are, the par-
ticular fit is accepted, if there is autocorrelation of errors, 
the model should be specified once again in the tentative 
model identification stage. 

According to the residuals correlation assumption, it has 
been stated the following hypotheses:

H0: the residuals are uncorrelated,

H1: the residuals are correlated.

Then, the correlogram of the residuals is built as shown in 
the figure 11, in which is observed that none of the lags 
are significant or out of the confidence limit; so, it can be 
assured that the residuals are a white noise process and 
that they are uncorrelated, reasons for which the null hy-
pothesis (H0) is accepted.
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Figure 11. Residuals correlogram.

The same way, the normality assumption of the residuals 
has been stated as follows: H0: the residuals are normally 
distributed, H1: the residuals are not normally distributed.
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Figure 12. Trended Q-Q) plots of the residuals.

When analyzing the results shown in the figure 12, rela-
ted to the standard normal probability (Q-Q) plots of the 
residuals, the null hypothesis (H0) is accepted; observing 
how all the observations perfectly adjust to the line in the 
trend Q-Q plot of the noise residuals and how they are ran-
domly distributed in the detrended Q-Q plot of the noise 
residuals (see figure 13).
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Figure 13. Detrended Q-Q) plots of the residuals.

When observing the statistics obtained during the valida-
tion of the model, the goodness-of-fit is also confirmed 
with: the stationary R-squared = 0.647, the R-squared = 
0.950, MAPE (mean absolute percentage error) = 3.3%, 
which is equivalent to the uncertainty of the model predic-
tion and considered by Tshepiso Tsoku, et al., (2017), as 
being very accurate as shown in the table 1; the MaxAPE 
for the worst scenario of 21%, and a Ljung-Box of 0.262 > 
0.05. All these values represent an acceptable amount of 
uncertainty to assume.

Then, the parameters of the model are presented in the 
table 3, where it is appreciated that:

0<nonseasonal MA<1

0<seasonal MA<1

As well as the significance of each parameter. 

Table 3. ARIMA Model Parameters.

Estimate SE t Sig.

Difference 1

MA Lag 1 ,510 ,079 6,473 ,000

Seasonal Di-
fference

1

MA, Seasonal Lag 1 ,661 ,090 7,377 ,000

Phase 4: forecasting

The other step is the forecasting of the values to be plan-
ned for 2021. The plot of the forecasting results is shown 
in the figure 14, where the commonalities between what 
happens in the last length of observed data and the fore-
casting are visible.
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Figure 14. Forecasting.

The equation of the model is shown in the expression 12:

 (12)

The values obtained as part of the forecasting and ex-
pressed in blisters are shown in the table 4. 

3- Third stage: adjusting of the forecasting

Data obtained from the forecasting process are adjusted to 
the changes which the morbidity could have experienced.

Table 4. Forecasted values for 2021 expressed in blisters.

Model

 Forecast UCL LCL Forecast UCL LCL

Jan 2021 1301 1438 1163 Jul 2021 1202 1418 987

Feb 2021 1299 1452 1145 Aug 2021 1211 1437 985

Mar 2021 1322 1489 1154 Sep 2021 1383 1619 1148

Apr 2021 1300 1480 1119 Oct 2021 1273 1518 1028

May 2021 1247 1440 1054 Nov 2021 1263 1517 1009

Jun 2021 1135 1340 931 Dec 2021 1375 1638 1112

Data to adjust the forecasting is obtained from the pharmaceutical technical department. The results of the adjustment 
are shown in the table 5.
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4- Fourth stage: forecasting accuracy 

The measurement of the forecasting accuracy will be per-
formed during 2021, to the extent that the actual demand 
is recorded in each month.

The results obtained in the application of the proposed 
procedure have a practical implication in the drug inven-
tory management process in pharmaceutical entities. 
These reflect the need to continue researching in studies 
related to this topic. The study of the demand is a key fac-
tor for the planning process of pharmaceuticals, as well as 
in responding to patients’ health needs.

CONCLUSIONS

The combination of historical data and morbidity in fore-
casting demands for medications has a direct impact on 
the accuracy of the planning process of such goods. The 
procedure designed takes into account this issue. 

After applying the four stages of the procedure to one 
drug, the ARIMA (0,1,1)x(0,1,1)12 model was selected, for 
this model was the best out of three tested. This selection 
was made taking into account the results shown in its sta-
tistics, the uncorrelated characteristics of its residuals and 
the capacity of prediction of the model. 

The Box-Jenkins methodology have been implemented 
within the procedure, being part of its second stage. This 
methodology has been scarcely used in medications in-
ventory forecasting; being demonstrated in this study its 
applicability in this research area, which supports the 
planning process of pharmaceuticals.

In future studies, the procedure should be implemented in 
forecasting the demand of other medications, which will 
contribute to its further validation.
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