
51

Volumen 10 | Número 5 | Octubre-Diciembre, 2018UNIVERSIDAD Y SOCIEDAD | Revista Científica de la Universidad de Cienfuegos | ISSN: 2218-3620

Fecha de presentación: Junio, 2018
Fecha de aceptación: Julio, 2018
Fecha de publicación: Octubre, 201806 LA ENSEÑANZA DE ARQUITECTURAS DISTRIBUIDAS EN LA UNIVERSIDAD
PARA SATISFACER LA DEMANDA DEL INTERNET DE LAS COSAS

OF DISTRIBUTED ARCHITECTURES AT THE UNIVERSITY FOR SATIS-
FYING INTERNET OF THINGS DEMAND

TEACHING

Dra. C. Guadalupe Ortiz1

E-mail: guadalupe.ortiz@uca.es
Dr. C. Alfonso García-de-Prado1

E-mail: alfonso.garciadeprado@uca.es
Dr. C. Juan Boubeta-Puig1

E-mail: juan.boubeta@uca.es
1 Universidad de Cádiz. Puerto Real. España.

Suggested citation (APA, sixth edition)

Ortiz, G., García-de-Prado, A., & Boubeta-Puig, J. (2018). Teaching distributed architectures at the university for satisfying
internet of things demand. Universidad y Sociedad, 10(5), 51-59. Recuperado de http://rus.ucf.edu.cu/index.php/rus

ABSTRACT

Teaching of distributed architectures in the computer engineering degrees has traditionally been based on contents rela-
ted to well-known established software paradigms and architectures. However, over the last few years, new solutions in the
field of distributed architectures have emerged, especially within the field of the Internet of Things (IoT). In this article we
tackle a methodology for teaching distributed architectures for the IoT from this new perspective. In this context, the des-
cription, implementation and testing of distributed architectures for IoT is therefore proposed. The methodology includes
the development and testing of a case study relevant for the scope of IoT and smart cities using emerging technologies.
In particular, in this paper we show the procedure followed to implement and test a case study related to traffic regulation
and emergency vehicles movement, enabling such vehicles to reach their destination in the minimum amount of time.

Keywords: Computer sciences, distributed architectures, Internet of things.

RESUMEN

La enseñanza de las arquitecturas distribuidas en los estudios universitarios de ciencias de la computación o ingeniería
informática se ha basado tradicionalmente en contenidos relacionados con paradigmas y arquitecturas de software bien
conocidos y establecidos. Sin embargo, en los últimos años han surgido nuevas soluciones en el campo de las arquitecturas
distribuidas, especialmente en el campo del Internet de las Cosas (IoT). En este artículo abordamos una metodología para
enseñar arquitecturas distribuidas para el IoT desde esta nueva perspectiva. En este contexto, se propone, por tanto, la
descripción, aplicación y prueba de arquitecturas distribuidas para el IoT. La metodología incluye el desarrollo y ensayo de
un caso de estudio relevante en el ámbito del IoT y las ciudades inteligentes mediante el uso de tecnologías emergentes. En
particular, en este artículo mostramos el procedimiento seguido para implementar y probar un caso de estudio relacionado
con la regulación del tráfico y el desplazamiento de vehículos de emergencia, permitiendo que dichos vehículos lleguen a
su destino en el menor tiempo posible.

Palabras clave: Ciencias de la computación, arquitecturas distribuidas, Internet de las cosas.

52

UNIVERSIDAD Y SOCIEDAD | Revista Científica de la Universidad de Cienfuegos | ISSN: 2218-3620

Volumen 10 | Número 5 | Octubre-Diciembre, 2018

INTRODUCTION

Teaching distributed architectures in computer engi-
neering is mainly based on contents related to traditio-
nal software architectures. However, over the last few
years, new architectures have emerged providing novel
solutions in the field of distributed architectures, such
as Hadoop-based approaches (Agneeswaran, 2014) or
Service-Oriented Architecture (SOA) ones (Papazoglou,
2012), respectively. On the other hand, the relevance
of the Internet of Things (IoT) in recent years (European
Research Group in the Internet of Things, 2012), also re-
quires special attention as to how architectures are adap-
ted in this context. All these issues have made us con-
sidering how to improve teaching in this field and have
derived us to propose new technologies and methodolo-
gies accordingly.

In the past we started introducing distributed program-
ming research concepts in the computer science degree
(García de Prado & Ortiz, 2017), but in this case we go
one step forward. In this context, the description, imple-
mentation and testing of distributed architectures for the
IoT is therefore considered of high relevance for computer
science curricula (Dempsey, 2017). In particular, we pro-
pose the study of event-driven service-oriented architec-
tures (Taylor, 2009) for the IoT following the methodology
described in the following section. The greatest handicap
is found when testing the implemented architectures, due
to the fact of using new and constantly evolving techno-
logies for the implementation. Additionally, there is a lack
of appropriate tools available for testing. For this reason,
we also propose the use of a tool for the generation of
synthetic data we created with the aim of testing IoT archi-
tectures, as part of the teaching methodology.

The rest of the paper is organized as follows. First of all,
we provide a brief technological background to facilitate
the paper comprehension to readers coming from other
disciplines. Secondly, we explain the methodology pro-
posed for teaching distributed architectures for satisfying
IoT demand. Then, we explain a real case study proposed
and implemented by a student following the methodolo-
gy during 2017-2018 academic year. Moreover, we also
explain how the student could test the case study thanks
to the use of a tool developed by the authors. Then, dis-
cussion and educational results are provided and, finally,
conclusions are presented.

DEVELOPMENT

In this section, we explain some high level information
about the technologies used, as previously said, so that

to facilitate the paper comprehension to readers coming
from other disciplines.

Internet of Things

IoT is defined in a wide way as a network formed by in-
terconnected physical objects uniquely identified (Atzori,
Iera & Morabito, 2010) and implies obtaining, transferring,
processing and analysis of data coming from such ob-
jects, as well as integration with the software architectures
making use of such data. Currently, several algorithms,
tools, and technologies enable IoT applications and
emerging architectures for a variety of application doma-
ins (Buyya & Vahid Dastjerdi, 2016). Such architectures
should provide a set of offered services, communication
networks and event processing and should fulfil key requi-
rements such as interoperability, reliability and scalability
(Buyya & Vahid Dastjerdi, 2016).

The relevance of implementing suitable architectures for
the IoT is not only a question of research, but also an
economic issue: the economic impact expected from IoT
applications is 11% of the worldwide economy (Buyya &
Vahid Dastjerdi, 2016). This is why we consider of high
relevance to include such topics in education.

Enterprise Service Bus

Before explaining Enterprise Service Buses (ESBs), we
have to introduce SOAs. A SOA consists of a paradigm
for the design and implementation of loosely coupled
distributed systems which make use of services for their
implementation. For these architectures the focus rema-
ins on the business process rather than on the technolo-
gies, allowing an easier integration of third-party services
(Papazoglou, 2012).

The basic unit of software to implement a SOA is a web
service. With the growth of service components and pro-
cesses in SOAs, a new service infrastructure is required
for maintaining applications in a flexible way and such
an infrastructure should provide support for a message
middleware. These requirements are fulfilled by an ESB,
which provides services to more elaborated architec-
tures through a messaging system (Papazoglou, 2012),
supplying interoperability among diverse formatting and
communication standards.

nITROGEN

nITROGEN (http://ucase.uca.es/nITROGEN) is a tool that
generates synthetic data and connects these data with
IoT oriented architectures (García De Prado, Ortiz, &
Boubeta-Puig, 2017; García-de-Prado, Ortiz, & Boubeta-
Puig, 2017). The tool can create 4 different types of data:

53

UNIVERSIDAD Y SOCIEDAD | Revista Científica de la Universidad de Cienfuegos | ISSN: 2218-3620

Volumen 10 | Número 5 | Octubre-Diciembre, 2018

arrays, numbers, strings and dates following several
predefined or customized data distributions. It can also
connect and submit the generated data to different IoT
platforms, applications and messaging brokers, such as
ThingSpeak, Mosquitto, RabbitMQ, databases as MySQL
or noSQL ones, or simply save the data on local files. Of
course, the tool is capable of creating multiple threads for
simultaneous data generation, as well as controlling the
speed of creation of such data, by different configurable
rates.

Complex Event Processing

For some scenarios, traditional SOA have evolved towards
Event-Driven SOAs (ED-SOA or SOA 2.0), where commu-
nication between the different agents of the system are
carried out by events, rather than using remote procedure
calls (Luckham, 2012).

In order to analyse and correlate big amounts of events in
such architectures, it is necessary to integrate Complex
Event Processing (CEP) (Luckham, 2012), which is a te-
chnology that allows capturing, analysing and correlating
a large amount of heterogeneous data with the aim of de-
tecting relevant situations in a particular domain (Inzinger,
Hummer, Satzger, Leitner & Dustdar, 2014). With CEP lan-
guages we can define the so called event patterns whe-
re we specify the conditions to be met in order to detect
such situations, namely complex events. In this type of
architectures, the use of a message broker can be key
to succeed. Message brokers implement asynchronous
communications which allow source and target messages
to be completely decoupled, as well as permitting storing
the messages in the broker until processed.

The methodology proposed for teaching distributed archi-
tectures in the scope of IoT requires a great practical load
and a constant work throughout the semester. In the fo-
llowing paragraphs we explain the steps proposed for the
methodology in this paper, also represented in Figure 1:

Figure 1. Proposed methodology.

1. First of all, the study of basic theoretical knowledge
about distributed architectures is required. In this

case, the explanation is not different from that provi-
ded in the usual teaching methodologies: a generali-
zed knowledge of the evolution of this type of architec-
ture is explained.

2. Secondly, new technologies and newly created archi-
tectures for the IoT are explained. In this first contact,
this new knowledge is explained theoretically and a
couple of relevant research papers are proposed for
reading and discussion. Likewise, various areas rela-
ted to the IoT in general and to smart cities in parti-
cular are discussed to show the applicability of the
technologies studied.

3. The technologies to be used are then studied by de-
veloping a simple, step-by-step example. In this sen-
se, CEP, SOA and ESBs are studied as a basis for the
implementation of SOA 2.0 for the IoT.

4. The bulk of the work is in the development of the
software architecture needed to tackle a specific
case study in the field of IoT and smart cities at the
student’s choice. For the development the student will
have to use the technologies previously studied. The
teacher will assist him during the full process of im-
plementation of the architecture, supporting any dou-
bts that may arise or suggesting improvements when
necessary.

5. Finally, the time has come to test the architecture.
Distributed architectures must be scalable as well as
efficient. To this end, the student is offered the oppor-
tunity to test his architecture using nITROGEN, our
synthetic data generator for the IoT. The teacher will
again give support to the doubts that arise to the stu-
dent and will guide him in the correct way to test the
system.

In this section, we motivate the case study challenge and
we introduce the software architecture, both proposed by
one of our students during 2017-2018 academic year.

Motivation

Today, due to the high density traffic, it is becoming incre-
asingly difficult for emergency vehicles to trace and make
a fast route to their destination. Even though the drivers
are trained to handle troubles, emergency vehicle’s dri-
vers cannot deal with some problems on the road, like
vehicles jams, opposite one-way or forbidden roads or
red traffic lights. Every second counts for success, and
success means saving a life.

Therefore, we need a way of stopping or reactivating
traffic to give priority to emergency vehicles, to let such
vehicles reach the top speed needed on every moment.
With the evolution of intelligent systems and the ability to
detect events and locations, technologies are ready to
respond to this need. In order to be able to develop an

54

UNIVERSIDAD Y SOCIEDAD | Revista Científica de la Universidad de Cienfuegos | ISSN: 2218-3620

Volumen 10 | Número 5 | Octubre-Diciembre, 2018

implementation that meets this necessity, we need to have
the real-time location of the emergency vehicle in question
from the start of the journey to the destination point, as
well as additional information on traffic status and traffic
light control.

In this case study we will focus on two scenarios:

1. The first one focuses on the emergency vehicle circu-
lating through an avenue: in such case, the emergen-
cy vehicle should maintain a speed between 40 km/h
and 60 km/h if the traffic does not cause any troubles.
In this case, we want to test the option of stopping the
traffic not only in the avenue, but also in any access to
it from adjacent streets, therefore letting the emergen-
cy vehicle to evade the stopped cars, without needing
to be aware of whether they can move and let free
space.

2. The second one is based on a narrow one-way street
which traffic-light is usually in red because it leads to
an avenue. In this case the emergency vehicle has to
pass through such street. The situation typically can
lead to a jam and the vehicle is forced to stop; this
could lead into several seconds or minutes of delay,
even increased if the vehicles in front of it are too slow.

Software Architecture

The software architecture implemented in this case study
is composed of the following elements, as shown in Figure
2:

 • Sensors: Due to the fact that we cannot use real emer-
gency vehicles information nor up-to-date traffic infor-
mation, we will generate such sensor data through the
use of nITROGEN. So, we will simulate the emergency
vehicle position and the traffic light status. In particu-
lar, we will provide the distance between the current
and target locations in a straight street, the state of the
traffic light (R or G), and the direction —from 1 to 4—,
representing the directions back and forward in the
avenue and accessing it from the right or the left.

Figure 2. Architecture proposed for the case study.

 • Message queues. The message queues can receive
data from un unlimited number of sources concer-
ning emergency vehicles, traffic information, et cete-
ra. In this case, they receive the data generated in the
simulator.

 • Enterprise Service Bus: The ESB will act as a midd-
leware for managing and exchanging the information
between all the different components involved in the
process. It is subscribed to the messages received
in the message queues and it redirects such informa-
tion to the CEP engine integrated with it, as well as
submits notifications according to the complex events
detected.

 • Complex Event Processing Engine: The events crea-
ted through the use of nITROGEN for simulating a
traffic light and the emergency vehicle directions are
processed in the CEP engine where we have defined
the event patterns to be detected (see the following
section). Depending of the complex events detected
new signals can be sent to the traffic light to change
their states.

 • Notification system: this prototype only sends elec-
tronic mail notifications, but the real implementation
should be able to send the appropriate order to the
corresponding traffic light, as previously explained.

 • NoSQL Database: We have such a database to store
the number of state changes, in order to be able to
know for future decisions if we are blocking a traffic

55

UNIVERSIDAD Y SOCIEDAD | Revista Científica de la Universidad de Cienfuegos | ISSN: 2218-3620

Volumen 10 | Número 5 | Octubre-Diciembre, 2018

light too much time, or the opposite, if the emergency
vehicle needs more time.

Event Patterns

First, we have defined the CEP domain by using the
MEdit4CEP tool (Boubeta-Puig, Ortiz & Medina-Bulo,
2015), a model-driven solution for bringing CEP tech-
nology closer to any user, hiding all implementation de-
tails from them. This tool provides us with the syntactical
validation and automatic transformation of the graphical
event pattern models into Esper Processing Language
(EPL) code. In particular, this CEP domain is composed of
the TrafficLight event type (see Figure 3). This event type
has the following event properties: trafficLightPosition
(from 0 to 60, a traffic light’s position related to the point of
origin), ambulancePosition (from 0 to 60, an ambulance’s
position related to the point of origin), direction (from 1 to
4, representing the directions back and forward in the av-
enue and accessing it from the right or the left), state (R or
V, the state of the traffic light), and the timestamp in which
the event has happened.

Figure 3. Ambulance CEP domain modeled with MEdit4CEP.

Once the CEP domain was defined, we have defined the
following three event patterns:

 • RedTrafficLightState: this pattern detects when an am-
bulance driving on a two-way road is reaching traffic
lights placed in a crossroads or pedestrian crossing.
As a consequence, all these traffic lights’ states will be
set to red. Figure 4 depicts this pattern modeled with
MEdit4CEP. Then, the pattern model has been auto-
matically transformed into Esper EPL implementation
code (see Listing 1).

 • GreenTrafficLightState: this pattern detects when an
ambulance driving on a one-way road is reaching tra-
ffic lights. Then, all these traffic lights’ states will be set
to green in order not to block the ambulance.

 • SideTrafficLightState: this pattern will allow to block the
horizontal traffic to the ambulance direction, i.e. traffic
lights whose states are 3 and 4. That way, traffic is cut
to let the ambulance go through the road.

Listing 1. Esper EPL implementation code for
RedTrafficLightState pattern automatically generated by
MEdit4CEP.

@Name(“RedTrafficLightState”)

@Tag(name=”domainName”, value=”Ambulance”)

insert into RedTrafficLightState

select a1.trafficLightLocation as trafficLightLocation1,

 a1.direction as direction1,

 ‘R’ as state1,

 ‘R’ as state2,

 a2.trafficLightLocation as trafficLightLocation2,

 a2.direction as direction2,

 a2.timestamp as timestamp

 from pattern [((every a1 = TrafficLight(a1.direc-
tion = 1)) -> a2 = TrafficLight((a2.direction = 2 and
a2.ambulanceLocation < a2.trafficLightLocation and (a2.
trafficLightLocation - a1.trafficLightLocation) < 25.0))
where timer:within(10 seconds))]

Figure 4. RedTrafficLightState pattern modeled with MEdit4CEP.

As previously explained, nITROGEN is a tool focused on
generating data of different types, simulating the different
sensors connected among the network.

The main window in nITROGEN let us set several features.
First of all, we are going to create groups of channels of

56

UNIVERSIDAD Y SOCIEDAD | Revista Científica de la Universidad de Cienfuegos | ISSN: 2218-3620

Volumen 10 | Número 5 | Octubre-Diciembre, 2018

communication. This can be done by following the next
steps:

1. We create a group by clicking ADD button in the top
left-hand side of Figure 5.

2. After creating a group, at least one channel should be
created in it by clicking ADD button below the group’s
config label.

Figure 5. Several channels configured in nITROGEN.

As Figure 5 shows, we have 3 levels of variables — local,
group and global— (see the right-hand side of the figu-
re). In each level we can create one or more variables of
random data for any of the 4 available types: R—Random
Numeric—, S—String—, V—List of values— and D—da-
tes and timestamps.

1. The local level is specific to a particular channel. A
channel is a single flow of data submitted to a target
element. Every channel can be composed of several
variables as well as static information. It can then be
configured pressing its config button, as later explai-
ned and can be enable or disable at any time marking
or unmarking the tick box, respectively.

2. In the group level, any created variable maintains the
same value for all the channels of the group. A group
can be used to create together different channels
which are submitting data to different target applica-
tions, but all channel data are submitted at the same
time with the same frequency.

3. Finally, global level includes variables which can be
used by any channel and that are taking the same va-
lue in any channel and group during every execution.

Configuring nITROGEN

In the configuration panel (see Figure 6), we can chan-
ge the speed of events production by configuring the fre-
quency variables. As shown in the figure, we can choose
between number of ticks per second or per minute that
will be used as the temporal unit. By default, the data for
every group of channels is generated for every tick, but
such frequency can be modified at any time.

We can also set when the simulation should stop: it can
be done after some seconds or ticks, or we can follow on
simulating events until it is stopped manually.

Finally, the refresh information is only for visual control,
allowing us to define how often we want to refresh the data
in the screen, regardless of the amount of generated data.

Figure 6. Configuration panel.

Example of Generated Data

Figure 7 shows the configuration of one of the four chan-
nels we created for the example of the narrow street.

Figure 7. Configuration panel for the generated data of a panel.

For our case study, in both examples (avenue and narrow
street) we need to generate the same type of data but
with a different number of channels. This is because we
need to stablish the location and direction of the traffic
lights, which are set statically. The traffic light state (if it is
red or green) is defined at group level, but the location of
the emergency vehicle was defined as a global variable,

57

UNIVERSIDAD Y SOCIEDAD | Revista Científica de la Universidad de Cienfuegos | ISSN: 2218-3620

Volumen 10 | Número 5 | Octubre-Diciembre, 2018

since the example provided is for one unique vehicle. The
former is an array of characters, composed by R or G,
representing both possible states, and the latter will be a
random number generator configured to follow a particu-
lar distribution (see Figure 8).

Figure 8. Configuration panel for the random number generator.

nITROGEN allow us to configure the target destination of
the simulated data. In this particular case, the data will
be sent to the message queues in the architecture (see
Figure 9).

Figure 9. Configuration of data destination.

Please note that the student, who implemented the case
study, decided to generate a fixed value for traffic-lights
location, a sequential one for the relative position of the
emergency vehicle, and a random one for the states of
the traffic lights. Even though the student was aware the
example did not reflect reality, he thought it was a good

approach to test the event patterns detection. Additionally,
the system can scale by setting several traffic lights per
districts, where every district data is generated by one
channel, so avoiding a centralized structure.

Results and future trends

By establishing the configuration mentioned before, we
have obtained events with the following format, for instan-
ce, “Location=50, Direction=1, State=R, LocationA=5” . All
the events created according to the configured rate have
been immediately submitted automatically to the messa-
ge queue and the system has immediately processed all
the events related to emergency vehicles path and desti-
nation, as well as traffic light status in the vehicle way rou-
te. The patterns previously described have successfully
detected in real time when a traffic light status had to be
changed to facilitate the emergency vehicle advance and
have submitted the corresponding alerts to the person in
charge.

In the future, thanks to 5G technologies, we could achieve
an acceptable response time for all the events and data
that must be processed on real time in the proposed case
study. Moreover, further complex event patterns could
be defined by traffic experts for big cities, and could be
deeply tested using nITROGEN before putting the system
into production. This could lead not only to emergency
vehicles saving time, but also to better traffic circulation,
and therefore saving the citizens money and decreasing
the pollution.

Additionally, other emerging technologies could be used
in conjunction with those proposed here. The use of
VANET (Vehicle Ad-Hoc Network) could improve the la-
tency and traffic lights could react based on the signals
sent from the cars in the road in real time.

Upon course finalization, the student feelings concerning
the technologies used when learning about distributed ar-
chitectures were twofold. On the one hand, they found of
great interest the technologies studied, since there are not
many available tutorials for their learning in the Internet,
and the support of the teacher was key to acquire the
knowledge. Besides, the fact of integrating several emer-
ging technologies rather than using them isolated was
recognized as an added-value in the learning process.
Even more, the students are conscious of that they are
learning emerging technologies and they are therefore
obtaining skills demanded in the industry.

On the other hand, the experience with nITROGEN was
found useful not only for the scope of the subject, but for
a variety of case-studies, technologies and systems im-
plementation. They found this tool especially useful for

58

UNIVERSIDAD Y SOCIEDAD | Revista Científica de la Universidad de Cienfuegos | ISSN: 2218-3620

Volumen 10 | Número 5 | Octubre-Diciembre, 2018

connecting (in a simulated way) an increasing number
of electronic devices to the network, just for sending the
gathered data, or for processing such data having the
chance of observing the results obtained in the system
for several situations without the need of having real data.
Thus, they highlighted the possibility of studying the via-
bility of theoretical systems, opening the chance to crea-
te them in the future, once their viability was previously
checked. The fact of being able to generate static and
random data, according to a particular distribution, was
considered as a great advantage together with the fact of
not having limitation in the number of channels and amou-
nt of data to be simulated.

CONCLUSIONS

We have followed the proposed methodology during this
academic year and the results were fully successful. The
students were motivated, acquired a deep knowledge on
emerging technologies and architectures for the IoT and
were able to develop a full case study along the semester.
Additionally, testing was also performed through the use
of the nITROGEN tool, which let them simulate the sensors
data required in the IoT case study. Thanks to the chan-
nel feature, which enables us to configure the information
type, format and where the generated data is going to be
sent, they could simulate as many devices as they want.

As an additional future activity in our methodology, we are
planning to require students to present their project to a
wider public, so that the attendees can vote the most in-
teresting proposal for the IoT and smart cities. This way
we encourage the students not only to implement a good
project and prepare an adequate presentation, but also to
continue with the project after the course is finalized if they
get good feedback. Besides we plan to combine this pro-
posal with additional innovation activities for the learning
process (Ortiz, García de Prado, & Boubeta-Puig, 2017).

BIBLIOGRAPHIC REFERENCES

Agneeswaran, V. S. (2014). Big data analytics beyond
hadoop: real-time applications with storm, spark,
and more hadoop alternatives. Upper Saddle River:
Pearson Education.

Atzori, L., Iera, A., & Morabito, G. (2010). The Internet
of Things: A survey. Computer Networks, 54(15),
2787–2805. Retrieved from https://www.cs.mun.ca/
courses/.../IoT-Survey-Atzori-2010.pdf

Boubeta-Puig, J., Ortiz, G., & Medina-Bulo, I. (2015).
MEdit4CEP: A model-driven solution for real-time
decision making in SOA 2.0. Knowledge-Based
Systems, 89, 97–112. Retrieved from https://www.
semanticscholar.org/paper/MEdit4CEP%3A-A-model-
driven-solution-for-real-time-in-Boubeta-Puig-Ortiz/4c4
9d26e3a676ac1ab75e958062e58177b782606

Buyya, R., & Vahid Dastjerdi, A. (2016). Internet of things:
principles and paradigms. Massachusetts: Morgan
Kaufmann.

Dempsey, M. (2017). Teaching the Internet of Things.
Retrieved from http://connectedtech.org/blog/
teaching-the-internet-of-things/

European Research Group in the Internet of Things.
(2012). The Internet of Things 2012 New Horizons.
Retrieved from http://www.internet-of-things-research.
eu/pdf/IERC_Cluster_Book_2012_WEB.pdf

García de Prado, A., & Ortiz, G. (2017). Experience on
Introducing Parallel and Distributed Architecture
Research Concepts in Computer Engineering Grade
Students. In INTED2017 Proceedings.

García De Prado, A., Ortiz, G., & Boubeta-Puig, J.
(2017). CARED-SOA: A Context-Aware Event-Driven
Service-Oriented Architecture. IEEE Access, 5, 4646–
4663. Retrieved from https://ieeexplore.ieee.org/
iel7/6287639/7859429/07874075.pdf

García-de-Prado, A., Ortiz, G., & Boubeta-Puig, J.
(2017). COLLECT: COLLaborativE ConText-aware
service oriented architecture for intelligent decision-
making in the Internet of Things. Expert Systems with
Applications, 85, 231–248.

Inzinger, C., Hummer, W., Satzger, B., Leitner, P., &
Dustdar, S. (2014). Generic event-based monitoring
and adaptation methodology for heterogeneous
distributed systems: event-based monitoring and
adptation for distributed systems. Software: Practice
and Experience, 44(7), 805–822. Retrieved from http://
dsg.tuwien.ac.at/staff/inzinger/dl/SPE_2014_monina.
pdf

Luckham, D. C. (2012). Event processing for business:
organizing the real-time enterprise. Hoboken: John
Wiley & Sons.

Ortiz, G., García de Prado, A., & Boubeta-Puig, J. (2017).
Fostering Learning through Media Games in Computer
Science. EDULEARN 17 Proceedings (pp. 1576–
1579).

59

UNIVERSIDAD Y SOCIEDAD | Revista Científica de la Universidad de Cienfuegos | ISSN: 2218-3620

Volumen 10 | Número 5 | Octubre-Diciembre, 2018

Papazoglou, M. (2012). Web services and SOA: principles
and technology (2nd ed). New York: Pearson Education.

Taylor, H. (Ed.). (2009). Event-driven architecture: how
SOA enables the real-time enterprise. Upper Saddle
River: Addison-Wesley.

